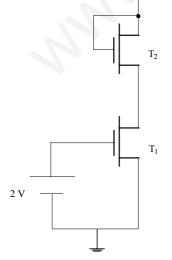

1º E.T.S.I.T. Convocatoria Extraordinaria de Septiembre - 2003 Tecnología y Componentes Electrónicos y Fotónicos


1. Calcular la relación entre las resistencias R_1 y R_2 para que el diodo D_1 conduzca en directa. Datos: D_1 : V_{γ} = 1 V, V_z = 4 V, R_s = 0 Ω y R_z = 100 Ω ; D_2 : V_{γ} = 1 V, V_z = 8 V, R_s = 10 Ω y R_z =1000 Ω . (3 puntos).

En el amplificador de la figura, calcular, bajo la condición de pequeña señal: a) Ganancia de tensión A_V=V_O/V_S.
b) Impedancia de entrada Z_{IN}. c) Impedancia de salida Z_{OUT}.

Considerar que V_{CC} =12 V, R_{B1} =115 $k\Omega$, R_{B2} =27 $k\Omega$, R_{C} =1.8 $k\Omega$, R_{E1} =22 Ω , R_{E2} =470 Ω , R_{S} =100 Ω y R_{L} =1 $k\Omega$, siendo los parámetros característicos del transistor bipolar utilizado: β =330 y V_{BE} =0.7V.

3. Hallar el punto Q de los transistores MOS en el siguiente circuito, si $K_1 \cdot (W_1/L_1) = 9 \text{ mA/V}^2$, $V_{T,1} = 1 \text{ V}$, $K_2 \cdot (W_2/L_2) = 4 \text{ mA/V}^2$ y $V_{T,2} = 2 \text{ V}$.

Duración: 2 horas y media Problema 1: 3 puntos; Problema 2: 4 puntos; Problema 3: 3 puntos