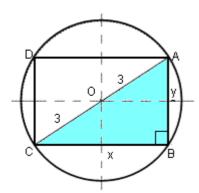
1. Halle el rectángulo de mayor área inscrito en una circunferencia de radio 3.

SOLUCIÓN



Sean x e y las dimensiones del rectángulo.

Área del rectángulo: $A = x \cdot y$

El triángulo ABC es rectángulo, sus lados miden $x, y \ y \ 6$, por tanto, se verifica que:

$$6^2 = x^2 + y^2 \rightarrow y = \sqrt{36 - x^2}$$

Luego, el área es A(x) =
$$x \cdot \sqrt{36 - x^2}$$

Para que su área sea máxima su primera derivada tiene que ser cero:

$$A'(x) = \sqrt{36 - x^2} + \frac{-\cancel{2}x^2}{\cancel{2}\sqrt{36 - x^2}} = \frac{36 - 2x^2}{\sqrt{36 - x^2}} = 0 \text{ si } 36 - 2x^2 = 0 \rightarrow x = +\sqrt{18} = 3\sqrt{2}$$

Descartada la solución negativa por ser x una longitud.

Por tanto, el rectángulo de mayor área es el cuadrado de lado $3\sqrt{2}$ unidades.

2. Halle una función polinómica de tercer grado $y = ax^3 + bx^2 + cx + d$ tal que tenga un mínimo en el punto (1,1) y un punto de inflexión en el punto (0,3).

SOLUCIÓN

La curva pasa por el punto (1,1), por tanto, se verifica que y(1) = 1: a + b + c + d = 1 (1)

La curva pasa por el punto (0,3), por tanto, se verifica que y(0) = 3: d = 3.

La función tiene un mínimo en x = 1, por tanto, se verifica que y'(1) = 0:

$$y' = 3ax^2 + 2bx + c \rightarrow y'(1) = 3a + 2b + c = 0$$
 (2)

La función tiene un punto de inflexión en x = 0, por tanto, se verifica que y''(0) = 0:

$$y'' = 6ax + 2b \rightarrow y''(0) = b = 0 \rightarrow b = 0$$

Sustituyendo los valores de d y b en las ecuaciones (1) y (2), obtenemos el siguiente sistema:

$$\begin{array}{c} a+c+3=1 \\ 3a+c=0 \end{array} \rightarrow \begin{array}{c} a+c=-2 \\ 3a+c=0 \end{array} \rightarrow 2a=2 \rightarrow a=1 \rightarrow c=-3$$

Por tanto, la función es $y = x^3 - 3x + 3$

- 1. Se considera la curva: $y = \frac{1}{1+x^2}$
 - a) Halle el punto de la curva en el que la recta tangente a su gráfica tiene pendiente máxima.
 - b) Calcule el valor de esa pendiente.

SOLUCIÓN

a) La pendiente de la recta tangente a su gráfica en un punto x = a viene dada por la derivada de la función en x = a (f'(a)).

Si
$$f(x) = y = \frac{1}{1+x^2} \rightarrow f'(x) = -\frac{2x}{(1+x^2)^2}$$

Para determinar la pendiente máxima derivamos f'(x)

$$f''(x) = \frac{-2\left(1+x^2\right)^2 + 2x \cdot 2\left(1+x^2\right) \cdot 2x}{\left(1+x^2\right)^{43}} = \frac{6x^2 - 2}{\left(1+x^2\right)^3} \rightarrow f''(x) = 0 \text{ si } 3x^2 - 1 = 0 \rightarrow x = \pm \frac{\sqrt{3}}{3}$$

Estudiamos el signo de f´´ para determinar el máximo:

$$f~''(x) > 0 \text{ si } x < -\frac{\sqrt{3}}{3} \quad y~x > \frac{\sqrt{3}}{3}$$

$$f~''(x) < 0 \text{ si } -\frac{\sqrt{3}}{3} < x < \frac{\sqrt{3}}{3}$$

$$\rightarrow x = -\frac{\sqrt{3}}{3} \text{ es un máximo} \rightarrow \text{Punto:} \left(-\frac{\sqrt{3}}{3}, \frac{3}{4}\right)$$

b) El valor de la pendiente es:

$$f\left(-\frac{\sqrt{3}}{3}\right) = -\frac{2\left(-\frac{\sqrt{3}}{3}\right)}{\left[1 + \left(-\frac{\sqrt{3}}{3}\right)^2\right]^2} = \frac{\frac{2\sqrt{3}}{3}}{\left(1 + \frac{1}{3}\right)^2} = \frac{\frac{2\sqrt{3}}{3}}{\frac{16}{9}} = \frac{3\sqrt{3}}{8}$$

1. Calcule:

$$\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x}\right)$$

Nota: In x denota el logaritmo neperiano de x

SOLUCIÓN

$$\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x}\right) = \infty - \infty \qquad \to \quad \lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x}\right) = \lim_{x\to 1} \frac{\ln x - x + 1}{(x-1)\ln x} = \frac{0}{0} \qquad \text{Aplicando L'Hopital} \to 0$$

$$\lim_{x \to 1} \frac{\ln x - x + 1}{(x - 1) \ln x} = \lim_{x \to 1} \frac{\frac{1}{x} - 1}{\ln x + \frac{x - 1}{x}} = \lim_{x \to 1} \frac{1 - x}{x \ln x + x - 1} = \frac{0}{0} \xrightarrow{\text{Aplicando L'Hopital}} \lim_{x \to 1} \frac{-1}{\ln x + x \cdot \frac{1}{x} + 1} = \lim_{x \to 1} \frac{-1}{\ln x + 2} = -\frac{1}{2}$$

2. Sea la función $f: R \rightarrow R$ definida por

$$f(x) = \begin{cases} 4 & \text{si } x = 0 \\ \frac{m(e^x - 1)}{x} & \text{si } x \neq 0 \end{cases}$$

- a) Calcule m para que la función sea continua en x = 0.
- b) Para el valor de m calculado estudie, usando la definición de derivada, si la función f es derivable en x = 0

SOLUCIÓN

a) La función es continua en x = 0 si se verifica $\lim_{x \to 0} f(x) = f(0)$:

$$\circ$$
 f(0) = 4

$$0 \lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{m(e^x - 1)}{x} = \frac{0}{0}$$

Las funciones y = x e $y = m(e^x - 1)$ son funciones derivables en todo su dominio, con lo cual, podemos aplicar la regla de L'Hôpital:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{m(e^x - 1)}{x} = \lim_{x \to 0} \frac{me^x}{1} = m$$

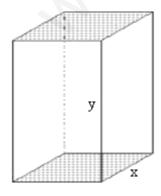
Por tanto, la función es continua en x = 0 si m = 4.

b) La función es derivable en x = 0 si se verifica que existe $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$

$$\begin{split} f'(0) &= \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\frac{4\left(e^x - 1\right)}{x} - 4}{x} = \lim_{x \to 0} \frac{4(e^x - 1) - 4x}{x^2} = \lim_{x \to 0} \frac{4(e^x - x - 1)}{x^2} = \frac{0}{0} \quad \xrightarrow{\text{L'H\"{o}pital}$} \\ &\lim_{x \to 0} \frac{4\left(e^x - 1\right)}{2x} = \frac{0}{0} \quad \xrightarrow{\text{L'H\"{o}pital}$} \lim_{x \to 0} \frac{4e^x}{2} = 2 \; . \end{split}$$

1. El perímetro de una cara lateral de un prisma recto de base cuadrada es de 60 centímetros. Calcule sus dimensiones de forma que su volumen sea máximo.

SOLUCIÓN



Volumen = área base · altura $\rightarrow V = x^2 \cdot y$

Perímetro de una cara lateral = $60 \rightarrow 2x + 2y = 60 \rightarrow x + y = 30$

Expresamos una de las variables en función de la otra: y = 30 - x

La función a maximizar es : $V(x) = x^2 \cdot (30 - x) = 30x^2 - x^3$

$$V'(x) = 60x - 3x^2$$

$$V'(x) = 0 \rightarrow 20x - x^2 = 0 \rightarrow x = 0, x = 20$$

$$V''(x) = 60 - 6x \rightarrow V''(20) = 60 - 120 < 0$$

Descartamos el valor x = 0 porque no se tendría prisma.

Aplicando el criterio de la segunda derivada, si V (20) < 0, la función presenta un máximo en x = 20. Por tanto, las dimensiones del prisma son base cuadrada de 20 cm y altura 10 cm.

- 2. La derivada de una función f(x) es $f'(x) = (x + 2)(x^2 9)$
- a) Calcule los intervalos de crecimiento y decrecimiento y los máximos y mínimos de f(x).

SOLUCIÓN

$$f'(x) = (x + 2)(x^2 - 9) \rightarrow f'(x) = (x + 2)(x - 3)(x + 3) = 0 \rightarrow x = -2, x = 3, x = -3$$

Estudiamos el signo de la primera derivada en toda la recta real.

-∞	-3	-2	: 3	$+\infty$
x + 3	-	+	+	+
x + 2	-	-	+	+
x – 3	-	-	-	+
f'(x)	_	+	_	+

Creciente en $(-3,-2) \cup (3,+\infty)$

Decreciente en $(-\infty, -3) \cup (-2,3)$

Mínimo relativo en x = -3, x = 3 (pasa de decreciente a creciente)

Máximo relativo en x = -2 (pasa de creciente a decreciente)

3. Calcule a para que las siguientes funciones:

$$f(x) = \frac{\text{sen ax}}{x}$$

$$g(x) = \frac{\cos^2 x - 1}{x^2}$$

tengan el mismo límite en el punto 0.

SOLUCIÓN

Calculamos cada límite:

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\text{sen ax}}{x} = \frac{0}{0} \quad \xrightarrow{\quad \text{Aplicando L'Hopital} \quad} \lim_{x\to 0} \frac{\text{sen ax}}{x} = \lim_{x\to 0} \frac{a\cos ax}{1} = a$$

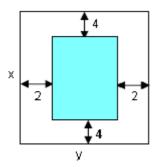
$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{\cos^2 x - 1}{x^2} = \frac{0}{0} \xrightarrow{\text{Aplicando L'Hopital}} \lim_{x \to 0} \frac{\cos^2 x - 1}{x^2} = \lim_{x \to 0} \frac{-2\cos x \text{sen} x}{2x} = \lim_{x \to 0} \frac{-\sin 2x}{2x} = \frac{0}{0}$$

$$\frac{\text{Aplicando L'Hopital}}{\text{Aplicando L'Hopital}} \Rightarrow \lim_{x \to 0} \frac{-2\cos 2x}{2} = -1$$

Para que los dos límites sean iguales debe verificarse que a = -1.

1. Se desea diseñar un libro de forma que cada página tenga 600 cm² de área. Sabiendo que los márgenes superior e inferior son de 4cm cada uno y los laterales de 2cm, calcule las dimensiones de cada página para que el área impresa se máxima.

SOLUCIÓN



Alto de la página impresa: x – 8

Ancho de la página impresa: y - 4

Área impresa: A = (x - 8)(y - 4)

Área página:
$$x \cdot y = 600 \rightarrow y = \frac{600}{x}$$

Área impresa:
$$A(x) = (x-8)\left(\frac{600}{x}-4\right) = 632-4x-\frac{4800}{x}$$

Para determinar el valor máximo, imponemos que A'(x) = 0:

$$A'(x) = -4 + \frac{4800}{x^2} = 0 \ \rightarrow A'(x) = \frac{4800 - 4x^2}{x^2} = 0 \ \rightarrow 1200 - x^2 = 0 \ \rightarrow x = 20\sqrt{3}$$

$$\text{A''}(x) = -2 \cdot \frac{4800}{x^3} < 0 \ \ \forall \ \ x > 0 \ \ \rightarrow \ \ \ \text{A''}\Big(20\sqrt{3}\Big) < 0 \ \ \rightarrow x = \ 20\sqrt{3} \ \ \text{máximo, siendo} \ \ y = \frac{600}{20\sqrt{3}} = 10\sqrt{3}$$

2. Calcula:

$$\lim_{x\to 0^+} \left(\frac{1}{x^2}\right)^{\tan(x)}$$

Tan(x) = función tangente de x

<u>SOLUCIÓN</u>

$$\lim_{x\to 0^+} \left(\frac{1}{x^2}\right)^{tan(x)} \to \infty^0$$

Tomando logaritmo obtenemos:

$$\lim_{x\to 0^+} \tan(x) \cdot \ln\left(\frac{1}{x^2}\right) \to 0 \cdot \infty$$

$$\lim_{x\to 0^+}\tan(x)\cdot\ln\left(\frac{1}{x^2}\right) = \lim_{x\to 0^+}\tan(x)\cdot(-2\ln x) = \lim_{x\to 0^+} -\frac{2\ln x}{\cos x} \to \frac{\infty}{\infty}$$

(1)
$$\ln\left(\frac{1}{x^2}\right) = \ln 1 - \ln x^2 = -\ln x^2 = -2\ln x$$

Aplicando L'Hôpital:

$$\lim_{x \to 0^+} -\frac{2\ln x}{\frac{\cos x}{\text{sen } x}} = \lim_{x \to 0^+} \frac{-2/x}{\frac{-\text{sen}^2 x - \cos^2 x}{\text{sen}^2 x}} = \lim_{x \to 0^+} \frac{2\text{sen}^2 x}{x} \to \frac{0}{0} \xrightarrow{\text{L'Hôpital}} \lim_{x \to 0^+} \frac{4\text{sen } x \cdot \cos x}{1} = 0$$

Por tanto,
$$\lim_{x\to 0^+} \left(\frac{1}{x^2}\right)^{\tan(x)} = e^0 = 1$$

1. Una ventana rectangular tiene un perímetro de 12 metros. Calcule las dimensiones de los lados del rectángulo para que el área de la ventana sea máxima.

SOLUCIÓN

Área ventana: $A = x \cdot y$, siendo x = base, y = altura

Perímetro rectángulo = 12 \rightarrow 2x + 2y = 12 \rightarrow x + y = 6 \rightarrow y = 6 - x

Área ventana: $A(x) = x \cdot (6 - x) = 6x - x^2$

Para determinar el área máxima, imponemos que A'(x) = 0:

$$A'(x) = 6 - 2x = 0 \rightarrow x = 3$$

Comprobamos que x = 3 es un máximo, para ello aplicamos el criterio de la segunda derivada:

A''(x) =
$$-2 < 0 \rightarrow x = 3$$
 es un máximo.

Las dimensiones del rectángulo son: $x = 3 \rightarrow y = 6 - 3 = 3$, es decir, un cuadrado de lado 3 m.

1. Sabiendo que el $\lim_{x\to 0} \frac{3x-m \, sen \, x}{x^2}$ es finito, calcule el valor de m y halle el límite.

SOLUCIÓN

$$\lim_{x \to 0} \frac{3x - m \, \text{sen} \, x}{x^2} = \frac{0}{0} \quad \forall \, \, m \in \, \mathbb{R} \quad \xrightarrow{\text{Aplicando L'Hopital}} \lim_{x \to 0} \frac{3 - m \cos x}{2x} = \frac{3 - m}{0}$$

Para que el límite sea finito, imponemos que $3 - m = 0 \rightarrow m = 3$

Resolvemos el límite si m = 3:

$$\lim_{x\to 0} \frac{3-3\cos x}{2x} = \frac{0}{0} \xrightarrow{\text{Aplicando L'Hopital}} \lim_{x\to 0} \frac{3\text{sen }x}{2} = 0$$

2. Sea f: $\mathbb{R} \longrightarrow \mathbb{R}$ la función definida por:

$$f(x) = \begin{cases} x^3 - x^2 & \text{si } x \le 1 \\ x - 1 & \text{si } x > 1 \end{cases}$$

b) Halle los extremos de la función

SOLUCIÓN

$$f(x) = \begin{cases} x^3 - x^2 & \text{si } x \le 1 \\ x - 1 & \text{si } x > 1 \end{cases} \rightarrow f'(x) = \begin{cases} 3x^2 - 2x & \text{si } x \le 1 \\ 1 & \text{si } x > 1 \end{cases} \rightarrow f''(x) = \begin{cases} 6x - 2 & \text{si } x \le 1 \\ 0 & \text{si } x > 1 \end{cases}$$

Para determinar los extremos imponemos que f '(x) = 0: $3x^2 - 2x = 0 \rightarrow x = 0$, $x = \frac{2}{3}$

Para determinar si los extremos son máximos o mínimos, aplicamos el criterio de la segunda derivada:

 $f''(0) = -2 < 0 \rightarrow f$ presenta un máximo en $x = 0 \rightarrow (0,0)$ máximo

$$f'\left(\frac{2}{3}\right) = 2 > 0 \rightarrow f$$
 presenta un mínimo en $x = \frac{2}{3} \rightarrow \left(\frac{2}{3}, -\frac{4}{27}\right)$ mínimo

1. Dada la curva:

$$f(x) = \frac{x^3}{3} - \frac{3x^2}{2} + 2x$$

- a) Obtenga sus máximos, mínimos y puntos de inflexión.
- b) Encuentre los intervalos de crecimiento y decrecimiento.

SOLUCIÓN

a) Para determinar los extremos relativos imponemos que f'(x) = 0:

$$f'(x) = x^2 - 3x + 2 = 0 \rightarrow (x - 2)(x - 1) = 0 \rightarrow x = 2, x = 1$$

Aplicando el criterio de la segunda derivada, determinamos si son máximos o mínimos:

$$f''(x) = 2x - 3 \rightarrow f''(2) = 1 > 0 \rightarrow La$$
 función tiene un mínimo en $x = 2$

$$\rightarrow$$
 f ''(1) = 1< 0 \rightarrow La función tiene un máximo en x = 1

Para determinar los puntos de inflexión imponemos que f ''(x) = 0:

$$f''(x) = 2x - 3 = 0$$
 si $x = \frac{3}{2} \rightarrow La$ función tiene un punto de inflexión en $x = \frac{3}{2}$ ya que $f'''(x) = 2 \neq 0$

b) f'(x) =
$$x^2 - 3x + 2 = 0 \rightarrow (x - 2)(x - 1) = 0 \rightarrow x = 2$$
, x = 1

Estudiamos el signo de la derivada en los siguientes intervalos:

- o $(-\infty,1)$: f'(x) > 0 ya que para x = 0 f'(0) > 0 \rightarrow f creciente
- o (1,2): f'(x) < 0 ya que para x = 1,5 f'(1,5) < 0 \rightarrow f decreciente
- o $(2,+\infty)$: f'(x) > 0 ya que para x = 3 f'(3) > 0 \rightarrow f creciente

2. Calcule:

a)
$$\lim_{x \to 1} \frac{1 - \cos(x - 1)}{(\ln x)^2}$$

b)
$$\lim_{x\to 0} (x^4 + e^x)^{\frac{1}{x}}$$

SOLUCIÓN

$$a) \lim_{x \to 1} \frac{1 - \cos{(x - 1)}}{\left(\text{Ln}\,x\right)^2} = \frac{0}{0} \xrightarrow{\text{L'Hôpital}} \lim_{x \to 1} \frac{1 - \cos{(x - 1)}}{\left(\text{Ln}\,x\right)^2} = \lim_{x \to 1} \frac{\text{sen}(x - 1)}{2\text{Ln}\,x \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{x \cdot \text{sen}(x - 1)}{2\text{Ln}\,x} = \frac{0}{0} \xrightarrow{\text{L'Hôpital}}$$

$$\lim_{x \to 1} \frac{\text{sen}(x-1) + x\cos(x-1)}{2 \cdot \frac{1}{x}} = \lim_{x \to 1} \frac{x\text{sen}(x-1) + x^2\cos(x-1)}{2} = \frac{1}{2}$$

b)
$$\lim_{x\to 0} (x^4 + e^x)^{\frac{1}{x}} \to 1^{\infty}$$

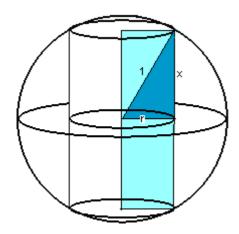
Aplicamos $\lim_{x\to 0} f(x)^{g(x)} = \lim_{x\to 0} e^{\lim_{x\to 0} [f(x)-1]\cdot g(x)}$

$$\lim_{x \to 0} \left[f(x) - 1 \right] \cdot g(x) \ = \ \lim_{x \to 0} \left(x^4 + e^x - 1 \right) \cdot \frac{1}{x} = \lim_{x \to 0} \frac{x^4 + e^x - 1}{x} = \frac{0}{0} \quad \xrightarrow{\quad L' H \hat{o}pital \quad} \lim_{x \to 0} \frac{x^4 + e^x - 1}{x} = \lim_{x \to 0} \frac{4x^3 + e^x}{1} = 1$$

Por tanto,
$$\lim_{x\to 0} (x^4 + e^x)^{\frac{1}{x}} = e^{-\frac{1}{x}}$$

3. De todos los cilindros inscritos en una esfera de radio 1 metro, halle el volumen del que lo tenga máximo.

SOLUCIÓN



Volumen de un cilindro: $V = \pi \cdot r^2 \cdot h$, siendo

r = radio del circulo base h = altura del cilindro

El cilindro está inscrito en una esfera de radio 1, por tanto, según el dibujo, se verifica:

$$1^2 = r^2 + x^2$$
, siendo $2x = h$.

Si $r = \sqrt{1 - x^2}$ y 2x = h, el volumen del cilindro es:

$$V(x) = \pi \cdot \left(\sqrt{1 - x^2}\right)^2 \cdot 2x = \pi \cdot 2x(1 - x^2) = \pi \cdot (2x - 2x^3)$$

Derivando: $V'(x) = \pi \cdot (2 - 6x^2)$

Para obtener el valor máximo imponemos que V'(x) = 0: $2-6x^2 = 0 \rightarrow x = \frac{\sqrt{3}}{3}$

$$V''(x) = -12x \rightarrow V''\left(\frac{\sqrt{3}}{3}\right) < 0 \rightarrow x = \frac{\sqrt{3}}{3} \text{ máximo}$$

Por tanto, el cilindro de mayor volumen tiene altura $h=2x=\frac{2\sqrt{3}}{3}$ y radio $r=\sqrt{1-x^2}=\sqrt{1-\frac{1}{3}}=\sqrt{\frac{2}{3}}=\frac{\sqrt{6}}{3}$.

1. Se considera la curva: $y = \frac{x^2}{1+x}$

b) Halle, si existen, los máximos, mínimos y puntos de inflexión.

SOLUCIÓN

Para determinar los extremos relativos imponemos que f'(x) = 0:

$$y' = \frac{2x \cdot (1+x) - x^2}{(1+x)^2} = \frac{2x + x^2}{(1+x)^2} = 0 \rightarrow x = 0, x = -2$$

$$y'' = \frac{(2+2x)\cdot(1+x)^2 - (2x+x^2)\cdot 2\cdot(1+x)}{\left(1+x\right)^4} = \frac{2(\cancel{1+x})\cdot(1+x)^2 - 2(2x+x^2)\cdot(\cancel{1+x})}{\left(1+x\right)^{\cancel{4}3}} = \frac{2}{\left(1+x\right)^3}$$

$$y''(0) = 2 > 0 \rightarrow (0,0)$$
 mínimo

$$y''(-2) = -2 < 0 \rightarrow (-2,-4) \text{ máximo}$$

Para determinar los puntos de inflexión imponemos que f ''(x) = 0, pero no se anula para ningún valor, por tanto, no existen.

1. La hipotenusa de un triángulo rectángulo mide 10 cm. Halle las dimensiones de los catetos de forma que el área del triángulo sea máxima.

SOLUCIÓN

Área del triángulo: $A = \frac{1}{2} \cdot x \cdot y$ siendo x e y los catetos del triángulo rectángulo.

La hipotenusa mide 10 cm, por tanto, se verifica: $10^2 = x^2 + y^2 \rightarrow y = \sqrt{100 - x^2}$

La función área es A(x) = $\frac{x \cdot \sqrt{100 - x^2}}{2}$.

Para determinar el valor máximo, calculamos la primera derivada e igualamos a cero:

$$A'(x) = \frac{1}{2} \cdot \left\lceil \sqrt{100 - x^2} + \frac{-\cancel{2}x^2}{\cancel{2}\sqrt{100 - x^2}} \right\rceil = \frac{1}{2} \cdot \frac{100 - 2x^2}{\sqrt{100 - x^2}} = \frac{50 - x^2}{\sqrt{100 - x^2}} = 0 \rightarrow 50 - x^2 = 0 \rightarrow x = \pm \sqrt{50} = \pm 5\sqrt{2}$$

$$x = 5\sqrt{2}$$
 (descartamos el valor negativo) $\rightarrow y = \sqrt{100 - 50} = 5\sqrt{2}$

Comprobamos que es un máximo de la función empleando el criterio de la segunda derivada:

$$A^{\prime\prime}(x) = \frac{-2x \cdot \sqrt{100 - x^2} - \left(50 - x^2\right) \cdot \frac{-\cancel{2}x}{\cancel{2}\sqrt{100 - x^2}}}{100 - x^2} = \frac{-2x \cdot \left(100 - x^2\right) + \left(50x - x^3\right)}{\left(100 - x^2\right) \cdot \sqrt{100 - x^2}} = \frac{x^3 - 150x}{\left(100 - x^2\right) \cdot \sqrt{100 - x^2}}$$

$$A''\left(5\sqrt{2}\right) = \frac{5\sqrt{2}\cdot(50-150)}{50\cdot\sqrt{50}} = \frac{5\sqrt{2}\cdot(-100)}{50\cdot5\sqrt{2}} = -2 < 0$$

Por tanto, el triángulo de área máxima es un triángulo rectángulo isósceles de catetos $5\sqrt{2}$ cm.

2. Se considera la función:

$$f(x) = \begin{cases} x \ln x & \text{si } x > 0 \\ ax^2 + bx + c & \text{si } x \le 0 \end{cases}$$

Determine los valores de a, b y c para que la función sea continua, tenga un máximo en x = -1 y la tangente en x = -2 sea paralela a la recta y = 2x.

SOLUCIÓN

Imponemos que f sea continua en x = 0: $\lim_{x\to 0} f(x) = f(0)$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0} \left(x \ln x \right) = 0 \cdot \infty \\ \to \lim_{x \to 0} \left(x \ln x \right) = \lim_{x \to 0} \frac{\ln x}{1/x} = \frac{\infty}{\infty} \\ \xrightarrow{\text{Aplicando L'Hopital}} \\ \lim_{x \to 0} \frac{1/x}{-1/x^2} = \lim_{x \to 0} \left(-x \right) = 0$$

$$f(0) = c \rightarrow c = 0$$

La función tiene un máximo en $x = -1 \rightarrow f'(-1) = 0$

$$f'(x) = \begin{cases} 1 + \ln x & \text{si } x > 0 \\ 2ax + b & \text{si } x \le 0 \end{cases} \to f'(-1) = -2a + b = 0 \to b = 2a$$

La tangente en x = -2 es paralela a y = $2x \rightarrow f'(-2) = 2 \rightarrow -4a + b = 2 \rightarrow -2a = 2 \rightarrow a = -1 \rightarrow b = -2 \rightarrow a = -1 \rightarrow b = -2 \rightarrow a = -1 \rightarrow b = -2 \rightarrow -2a = 2 \rightarrow a = -1 \rightarrow b = -2 \rightarrow -2a = 2 \rightarrow a = -1 \rightarrow b = -2 \rightarrow -2a = 2 \rightarrow a = -1 \rightarrow b = -2 \rightarrow -2a = 2 \rightarrow a = -1 \rightarrow b = -2 \rightarrow -2a = 2 \rightarrow -2a =$

- 1. Dada la función $y = 5xe^{x-1}$
- a) Calcule los intervalos de crecimiento y decrecimiento de la función.
- b) Halle, si existen, los máximos, mínimos y puntos de inflexión.

<u>SOLUCIÓN</u>

Para estudiar el crecimiento de la función, determinamos f'(x):

$$f'(x) = 5e^{x-1} + 5xe^{x-1} = 5e^{x-1}(1+x) = 0 \rightarrow x = -1$$

$$f'(x) > 0$$
 si $x > -1 \rightarrow f$ creciente en $(-1, +\infty)$

$$f'(x) < 0$$
 si $x < -1 \rightarrow f$ decreciente en $(-\infty, -1)$

Según el criterio de la primera derivada, la función tiene un mínimo en $\left(-1, -\frac{5}{e^2}\right)$

Para determinar los puntos de inflexión de la función, calculamos f "(x):

$$f''(x) = 5 e^{x-1} (1+x) + 5 e^{x-1} = 5 e^{x-1} (2+x) = 0 \text{ si } x = -2$$

Estudiando el signo de la segunda derivada:

Si
$$x > -2 \rightarrow f''(x) > 0 \rightarrow f$$
 cóncava

Si x <-2
$$\rightarrow$$
 f $''(x)$ < 0 \rightarrow f cónvexa

Por tanto, la función tiene un punto de inflexión en $\left(-2, -\frac{10}{e^3}\right)$

1. Se desea construir un prisma recto de base cuadrada cuya área total sea 96 m^2 . Determine las dimensiones del lado de la base y de la altura para que el volumen sea máximo.

<u>SOLUCIÓN</u>

Sea x = lado de la base

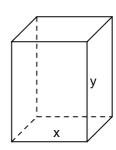
A = 96
$$\Rightarrow$$
 96 = 2x² + 4xy \Rightarrow 48 = x² + 2xy \Rightarrow y = $\frac{48 - x^2}{2x}$

$$V = x^2 \cdot y \Rightarrow V = x^2 \cdot \frac{48 - x^2}{2x} = \frac{48x - x^3}{2}$$

$$V' = \frac{48 - 3x^2}{2} = 0 \Rightarrow 16 = x^2 \Rightarrow x = 4 \text{ m} \Rightarrow y = \frac{48 - 16}{8} = 4 \text{ m}$$

$$V'' = -\frac{6x}{2} = -3x \Rightarrow V''(4) = -12 < 0 \Rightarrow x = 4 \text{ máximo}$$

El volumen es máximo en un cubo de arista 4 m



2. Sea
$$f(x) = \frac{x^2 - 5x + 7}{x - 3}$$
.

a) Determina el dominio de definición, los intervalos de crecimiento y decrecimiento y los máximos, mínimos y puntos de inflexión.

SOLUCIÓN

a) Dom (f) = $\mathbb{R} - \{3\}$

Intervalos de crecimiento y decrecimiento

$$f(x) = \frac{x^2 - 5x + 7}{x - 3} \Rightarrow f'(x) = \frac{(2x - 5)(x - 3) - (x^2 - 5x + 7)}{(x - 3)^2} = \frac{x^2 - 6x + 8}{(x - 3)^2}$$

$$f'(x) = 0 \Rightarrow x^2 - 6x + 8 = 0 \Rightarrow (x - 4)(x - 2) = 0 \Rightarrow x = 2, x = 4$$

$$f'(x) > 0 \Rightarrow x < 2$$
, $x > 4 \Rightarrow f$ creciente

$$f'(x) < 0 \Rightarrow 2 < x < 4 \Rightarrow f$$
 decreciente

x = 2 máximo relativo (pasa de creciente a decreciente) \rightarrow $f(2) = -1 \rightarrow$ Punto (2, -1)

x = 4 mínimo relativo (pasa de decreciente a creciente) \rightarrow f(4) = 3 \rightarrow Punto(4,3)

$$f''(x) = \frac{(2x-6)(x-3)^{2} - (x^2-6x+8) \cdot 2(x-3)}{(x-3)^{43}} = \frac{2}{(x-3)^3}$$

No hay puntos de inflexión ya que $f''(x) > 0 \ \forall x \in Dom(f)$

- 1. Se considera la función: $f(x) = \frac{x-1}{x^2}$
- b) Estudie los intervalos de crecimiento, decrecimiento, concavidad y convexidad.
- c) Halle los máximos, mínimos y puntos de inflexión.

SOLUCIÓN

a) Dom (f) =
$$\mathbb{R} - \{0\}$$

b)
$$f(x) = \frac{x-1}{x^2} \Rightarrow f'(x) = \frac{x^2 - (x-1) \cdot 2x}{x^4} = \frac{x - 2 \cdot (x-1)}{x^3} = \frac{2 - x}{x^3} \Rightarrow f'(x) = \frac{2 - x}{x^3}$$

f creciente si f'(x) > 0 y decreciente si f'(x) < 0

- 0	0	2	+ ∞
2 – x	+	+	_
x ³	1	+	+
Cociente	_	+	_
,			

$$f$$
 creciente $\forall x \in (0,2)$

f decreciente
$$\forall x \in (-\infty,0) \cup (2,+\infty)$$

$$f''(x) = \frac{-x^3 - (2 - x) \cdot 3x^2}{x^6} = \frac{-x - 3 \cdot (2 - x)}{x^4} = \frac{2x - 6}{x^4}$$

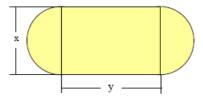
Si
$$x < 3$$
, $x \ne 0 \rightarrow f''(x) < 0 \rightarrow f$ convexa

Si
$$x > 3 \rightarrow f''(x) > 0 \rightarrow f$$
 cóncava

c) La función presenta un máximo en x = 2 (cambia de creciente a decreciente)

Punto de inflexión en x = 3 (pasa de convexa a cóncava)

1. Se dispone de 200 m de tela metálica y se desea vallar un recinto formado por un rectángulo y dos semicírculos como indica la figura.



Determina la función que determina el área de la figura en función del valor x.

SOLUCIÓN

Área = área del rectángulo + área círculo = xy + $\pi \frac{x^2}{4}$

Longitud de la valla: $200 = 2y + \pi x \Rightarrow y = 100 - \frac{\pi x}{2}$

A = xy +
$$x \left(100 - \frac{\pi x}{2} \right) - \pi \frac{x^2}{4} = 100x - \frac{3\pi x^2}{4}$$

$$A = 100x - \frac{3\pi x^2}{4} \Rightarrow A' = 100 - \frac{3\pi x}{2} \Rightarrow A'' = \frac{3\pi}{2} < 0$$

A'= 0 si
$$100 - \frac{3\pi x}{2} = 0 \Rightarrow 200 - 3\pi x = 0 \Rightarrow x = \frac{200}{3\pi} \Rightarrow y = 100 - \frac{\pi}{2} \cdot \frac{200}{3\pi} = 100 - \frac{100}{3} = \frac{200}{3}$$

3. Se considera la función: $f(x) = \frac{x}{x^2 + 1}$

Halle los máximos y mínimos.

SOLUCIÓN

Para determinar sus extremos relativos calculamos f'(x) e imponemos que sea cero.

$$f'(x) = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} \Rightarrow f'(x) = 0 \text{ si } x = 1, x = -1$$

$$-1 < x < 1$$
, $f'(x) > 0 \Rightarrow f$ creciente

$$x < -1$$
 y $x > 1$ f'(x) $< 0 \Rightarrow$ f decreciente

Luego, x = 1 máximo, x = -1 mínimo

1.- Se dispone de una chapa de acero que puede representarse por la región del plano determinada por la parábola $y = -x^2 + 4$ y la recta y = 1.

b) Determine las dimensiones del rectángulo de área máxima que se puede obtener a partir de dicha chapa con la condición de que uno de sus lados esté en la recta y = 1.

SOLUCIÓN

Sea 2x = base del rectángulo (según dibujo)

h = altura del rectángulo

Área del rectángulo: $A = 2x \cdot h$

Según el dibujo: $h = 4 - x^2 - 1 = 3 - x^2$

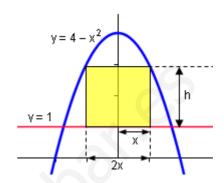
$$A(x) = 2x(3 - x^2) = 6x - 2x^3$$

$$A'(x) = 6 - 6x = 0 \Rightarrow x = 1$$

$$A''(x) = -6 < 0$$
 máximo.

$$x = 1 \Rightarrow y = 3 - 1 = 2$$

El rectángulo es un cuadrado de lado 2 x 2.



2.- Se considera la función $f(x) = 2 - \frac{x}{x^2 + 1}$

a) Halle los máximos, mínimos y puntos de inflexión.

SOLUCIÓN

a)
$$f(x) = 2 - \frac{x}{x^2 + 1} = \frac{2x^2 - x + 2}{x^2 + 1}$$

$$f'(x) = -\frac{x^2 + 1 - x \cdot 2x}{(x^2 + 1)^2} = -\frac{-x^2 + 1}{(x^2 + 1)^2} = \frac{x^2 - 1}{(x^2 + 1)^2} \rightarrow f'(x) = \frac{x^2 - 1}{(x^2 + 1)^2} = 0 \quad \text{si } x = 1, \ x = -1$$

$$f'(x) > 0$$
 si $x < -1$, $x > 1$

$$f'(x) < 0 \text{ si } -1 < x < 1$$

Luego x = -1
$$\rightarrow \left(-1, \frac{5}{2}\right)$$
 máximo , x = 1 $\rightarrow \left(1, \frac{3}{2}\right)$ mínimo

$$f''(x) = \frac{2x(x^2+1)^{2} - (x^2-1) \cdot 2 \cdot (x^2+1) \cdot 2x}{(x^2+1)^{43}} = \frac{2x^3 + 2x - 4x^3 + 4x}{(x^2+1)^3} = \frac{-2x^3 + 6x}{(x^2+1)^3} = \frac{-2x(x^2-3)}{(x^2+1)^3}$$

$$f''(x) = \frac{-2x(x^2 - 3)}{(x^2 + 1)^3} = 0$$
 si $x = 0, x = \pm\sqrt{3}$

$$f''(x) > 0 \text{ si } x < -\sqrt{3}, \ 0 < x < \sqrt{3}$$

$$f''(x) < 0 \text{ si } x < -\sqrt{3} < x < 0, x > \sqrt{3}$$

Luego x = 0, x =
$$\pm\sqrt{3}$$
 son P.I.

Coordenadas: (0,0) ,
$$\left(\sqrt{3},\frac{8-\sqrt{3}}{4}\right)$$
 y $\left(-\sqrt{3},\frac{8+\sqrt{3}}{4}\right)$

2. Calcule:

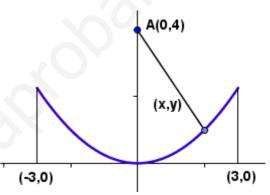
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$

SOLUCIÓN

b)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right) = \frac{0}{0}$$

$$\underset{\mathsf{x} \to 0}{\text{lim}} \left(\frac{1}{\mathsf{x}} - \frac{1}{e^{\mathsf{x}} - 1}\right) = \underset{\mathsf{x} \to 0}{\text{lim}} \frac{e^{\mathsf{x}} - \mathsf{x} - 1}{\mathsf{x}e^{\mathsf{x}} - \mathsf{x}} \underset{\mathsf{L} \text{ Hopital}}{\overset{\text{=}}{\text{lim}}} \frac{e^{\mathsf{x}} - 1}{e^{\mathsf{x}} + \mathsf{x}e^{\mathsf{x}} - 1} = \frac{0}{0} \underset{\mathsf{L} \text{ Hopital}}{\overset{\text{=}}{\text{lim}}} \frac{e^{\mathsf{x}}}{e^{\mathsf{x}} + e^{\mathsf{x}} + \mathsf{x}e^{\mathsf{x}}} = \underset{\mathsf{x} \to 0}{\text{lim}} \frac{e^{\mathsf{x}}}{(2 + \mathsf{x})e^{\mathsf{x}}} = \frac{1}{2}$$

- 1.- Un río describe la curva $y = \frac{1}{4}x^2 \text{ con } x \in [-3,3]$. En el punto A(0,4) hay un pueblo:
 - a) Expresa la función distancia entre un punto cualquiera del río y el pueblo en función de la abscisa x.
 - b) ¿Cuáles son los puntos de este tramo del río que están más alejados y más cercanos al pueblo?
 - (Sugerencia: estudia los máximos y mínimos del cuadrado de la función hallada en el apartado anterior)
 - c) ¿Hay algún punto del río que esté a una distancia menor que 2 del pueblo?



SOLUCIÓN

a) Cualquier punto de la curva tiene coordenadas P = $\left(x, \frac{1}{4}x^2\right)$

La distancia al punto A(0,4) y el punto P es:

D(A,P) =
$$\sqrt{x^2 + \left(\frac{1}{4}x^2 - 4\right)^2}$$

b) Defino f(x) = $x^2 + \left(\frac{1}{4}x^2 - 4\right)^2 \Rightarrow f'(x) = 2x + 2\left(\frac{1}{4}x^2 - 4\right) \cdot \frac{2}{4}x = 2x + \left(\frac{1}{4}x^2 - 4\right)x = \frac{1}{4}x^3 - 2x$

$$f'(x) = 0 \text{ si } \frac{1}{4}x^3 - 2x = 0 \Rightarrow x^3 - 8x = 0 \Rightarrow x(x^2 - 8) = 0 \Rightarrow x = 0, x = x = \pm \sqrt{8} = \pm 2\sqrt{2}$$

$$f''(x) = \frac{3}{4}x^2 - 2$$

f''(0) = -2 < 0 máximo

$$f''''(\pm\sqrt{8}) = \frac{3}{4}8 - 2 = 6 - 2 = 4 > 0$$
 mínimos

El punto más lejano es (0,0) y los más cercanos $\left(\sqrt{8},2\right)$ y $\left(-\sqrt{8},2\right)$

c) Uno de los puntos más cercano es $B(\sqrt{8},2)$

d(B,A) =
$$\sqrt{8 + (2-4)^2}$$
 = $\sqrt{8+4}$ = $\sqrt{12}$ = $2\sqrt{3}$ > 2

No hay ningún punto cuya distancia al pueblo sea menor que 2.

1.- Dada la función $f(x) = ax^3 + bx^2 + cx + d$ determina las constantes a, b, c, d de manera que simultáneamente:

- Su gráfica pase por el origen de coordenadas y por el punto (2, 2).
- La función posea un punto de inflexión en x = 0.
- La función posea un mínimo en x = 1.

SOLUCIÓN

Pasa por el origen de coordenadas: $f(0) = 0 \Rightarrow f(0) = d = 0$

Pasa por el punto (2,2): $f(2) = 2 \Rightarrow f(2) = 8a + 4b + 2c = 2 \Rightarrow 4a + 2b + c = 1$

Punto de inflexión en x = 0: f''(0) = 0

$$f(x) = ax^3 + bx^2 + cx + d \Rightarrow f'(x) = 3ax^2 + 2bx + c \Rightarrow f''(x) = 6ax + 2b$$

$$f''(0) = 2b = 0 \Rightarrow b = 0$$

Posee mínimo en x = 1: f'(1) = 0

$$f'(1) = 3a + 2b + c = 0 \Rightarrow 3a + c = 0$$

$$4a+c=1$$

$$3a+c=0$$
 \Rightarrow $a=1 \Rightarrow c=-3$

Luego,
$$f(x) = x^3 - 3x$$

2.- Dada la función $f(x) = x^4 e^{-x}$

- a) Calcula los intervalos de crecimiento y decrecimiento de la función.
- b) Halla, si existen, los máximos, mínimos y puntos de inflexión.

<u>SOLUCIÓN</u>

a)
$$f'(x) = 4x^3 e^{-x} - x^4 e^{-x} = x^3 (4 - x) e^{-x}$$

$$f'(x) = 0 \text{ si } x = 0, x = 4$$

$$f'(x) > 0$$
 si $x < 0$, $x > 4 \Rightarrow f$ decreciente

$$f'(x) < 0$$
 si $0 < x < 4 \Rightarrow f$ creciente

b) Máximo en x = 0, mínimo en x = 4

$$f'(x) = (4x^3 - x^4) e^{-x} \ \Rightarrow \ f''(x) = (12x^2 - 4x^3) e^{-x} - (4x^3 - x^4) e^{-x} = (x^4 - 8x^3 + 12x^2) e^{-x}$$

$$f''(x) = 0 \text{ si } x^4 - 8x^3 + 12x^2 = 0$$

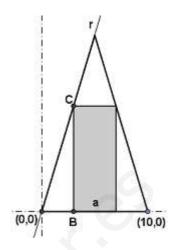
$$x^{2}(x^{2} - 8x + 12) = 0 \Rightarrow x = 0, x = 2, x = 6$$

$$f''(x) > 0 \text{ si } x < 2, x > 6$$

$$f''(x) < 0 \text{ si } 2 < x < 6$$

La función tiene dos P.I. en x = 2, x = 6.

- 1.- El triángulo isósceles, descrito en la Figura, mide 10 cm de base y 20 cm de altura.
- a) ¿Cuál es la ecuación de la recta r señalada en la figura que contiene el lado del triángulo?
- b) Dado el rectángulo inscrito cuya base mide a, calcula las coordenadas de los puntos B y C en función de a.
- c) Halla el valor de a que hace máxima el área del rectángulo del rectángulo.



SOLUCIÓN

a) La recta r es la recta que pasa por (0,0) y (5,20): Pendiente: $20/5 = 4 \Rightarrow r$: y = 4x

b)
$$B\left(5-\frac{a}{2},0\right) \Rightarrow C\left(5-\frac{a}{2},20-2a\right)$$

El punto C está sobre la recta r, por tanto:

Si
$$x = 5 - \frac{a}{2} \Rightarrow y = 4\left(5 - \frac{a}{2}\right) = 20 - 2a$$

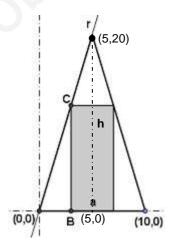
c) Área del rectángulo:

$$A = a \cdot (20 - 2a) = 20a - 2a^2$$

$$A' = 20 - 4a = 0$$
 si $a = 5 \Rightarrow 20 - 2a = 20 - 10 = 10$

A'' = - 4 < 0
$$\Rightarrow$$
 a = 5 es un máximo

Las dimensiones del rectángulo son 10 X 5



1.- Calcula:

$$\lim_{x\to 0} \frac{e^x - x - \cos x}{\sin^2 x}$$

<u>SOLUCIÓN</u>

a)
$$\lim_{x\to 0} \frac{e^x - x - \cos x}{\sin^2 x} = \frac{0}{0}$$
 . Por L´Hopital:

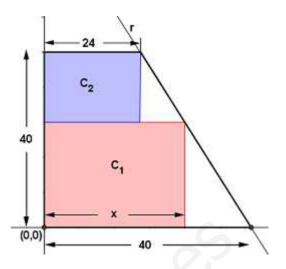
$$\lim_{\mathsf{x}\to 0} \frac{\mathsf{e}^\mathsf{x} - \mathsf{x} - \mathsf{cos}\,\mathsf{x}}{\mathsf{sen}^2\mathsf{x}} = \lim_{\mathsf{x}\to 0} \frac{\mathsf{e}^\mathsf{x} - 1 + \mathsf{sen}\,\mathsf{x}}{2\mathsf{sen}\,\mathsf{x}\,\mathsf{cos}\,\mathsf{x}} = \lim_{\mathsf{x}\to 0} \frac{\mathsf{e}^\mathsf{x} - 1 + \mathsf{sen}\,\mathsf{x}}{\mathsf{sen}\,2\mathsf{x}} = \lim_{\mathsf{L}' \to \mathsf{opital}} \frac{\mathsf{e}^\mathsf{x} + \mathsf{cos}\,\mathsf{x}}{2\,\mathsf{cos}\,2\mathsf{x}} = \frac{2}{2} = 1$$

2.- Un campo tiene forma de trapecio rectángulo. La longitud de las bases son 24m y 40 m, y la de su altura 40 m. Se divide en dos campos rectangulares C_1 y C_2 . Situando el campo en el origen de coordenadas como muestra la figura, calcula:

a) La ecuación de la recta r que contiene el lado inclinado del trapecio.

b) El área de los campos en función de la anchura x de C_1 .

c) Se quiere sembrar maíz en el campo C_1 y trigo en el campo C_2 . El beneficio del maíz es de $1,2 \in \text{por m}^2$ y el del trigo 1 euro, ¿cuáles son las dimensiones de los campos que hacen el beneficio máximo?



SOLUCIÓN

a) r: recta que pasa por (40,0) y (24,40)

$$y = -\frac{5}{2}(x - 40) = -\frac{5}{2}x + 100 \implies 5x + 2y - 200 = 0$$

b) Punto de corte C_1 y la recta r: $P\left(x, -\frac{5}{2}x + 100\right)$

Área de C1:
$$\mathbf{x} \cdot \left(-\frac{5}{2}\mathbf{x} + 100 \right) = -\frac{5}{2}\mathbf{x}^2 + 100\mathbf{x}$$

Área de C2:
$$24 \cdot \left(40 + \frac{5}{2}x - 100\right) = 24 \cdot \left(\frac{5}{2}x - 60\right) = 60x - 1440$$

c) Beneficio:
$$f(x) = 1'2 \cdot \left(-\frac{5}{2}x^2 + 100x\right) + (60x - 1440) = -3x^2 + 180x - 1440$$

$$f'(x) = -6x + 180 = 0 \Rightarrow x = 30 \Rightarrow y = -\frac{5}{2} \cdot 30 + 100 = -75 + 100 = 25$$

$$f''(x) = -6 < 0 \Rightarrow x = 30 \text{ es máximo } \rightarrow y = 25 \text{ m}$$

1.- Se dispone de una tela metálica de 100 metros para vallar una región como la de la figura. ¿Cuáles son los valores de x e y que hacen que el área encerrada sea máxima?

<u>SOLUCIÓN</u>

Perímetro:
$$100 = 3x + 2y \implies y = \frac{100 - 3x}{2} = 50 - \frac{3x}{2}$$

La figura está formada por un rectángulo, de dimensiones x e y, y un triángulo equilátero de lado x.

Área del rectángulo:
$$xy = \left(50 - \frac{3x}{2}\right)x = 50x - \frac{3x^2}{2}$$

Altura del triángulo:
$$h^2 = x^2 - \frac{x^2}{4} = \frac{3}{4}x^2 \implies h = \frac{\sqrt{3}}{2}x$$

Área del triángulo:
$$\frac{1}{2} \mathbf{x} \cdot \mathbf{h} = \frac{1}{2} \mathbf{x} \cdot \frac{\sqrt{3}}{2} \mathbf{x} = \frac{\sqrt{3}}{4} \mathbf{x}^2$$

Área total: A =
$$50x - \frac{3}{2}x^2 + \frac{\sqrt{3}}{4}x^2 = 50x + \frac{\sqrt{3} - 6}{4}x^2$$

A' = 50 +
$$\frac{\sqrt{3} - 6}{2}$$
x = 0 \Rightarrow 100 + $(\sqrt{3} - 6)$ x = 0 \Rightarrow x = $\frac{100}{6 - \sqrt{3}}$ = $\frac{100(6 + \sqrt{3})}{36 - 3}$ = $\frac{100(6 + \sqrt{3})}{33}$

A'' =
$$\frac{\sqrt{3}-6}{2}$$
 < 0

Luego
$$x = \frac{100(6+\sqrt{3})}{33}$$
 $\Rightarrow y = 50 - \frac{3}{2} \cdot \frac{100 \cdot (6+\sqrt{3})}{33} = 50 - \frac{50(6+\sqrt{3})}{11} = \frac{550 - 300 - 50\sqrt{3}}{11} = \frac{250 - 50\sqrt{3}}{11}$
$$y = \frac{250 - 50\sqrt{3}}{11}$$

El área encerrada es máxima si $x = \frac{100(6+\sqrt{3})}{33}$ e $y = \frac{250-50\sqrt{3}}{11}$.

- 2. Sea la función $f(x) = \frac{\text{sen}x}{2 \cos x}$, calcula:
 - a) Su dominio de definición, sus máximos y mínimos en el intervalo $[0,2\pi]$

SOLUCIÓN

a) Dom(f) = \mathbb{R} ya que $|\cos x| \le 1$

$$f(x) = \frac{\text{senx}}{2 - \cos x} \implies f'(x) = \frac{\cos x (2 - \cos x) - \text{senx(senx)}}{(2 - \cos x)^2} = \frac{2\cos x - 1}{(2 - \cos x)^2}$$

$$f'(x) = 0 \text{ si } 2\cos x - 1 = 0 \Rightarrow \cos x = \frac{1}{2} \Rightarrow x = 60^{\circ}, x = 300^{\circ}$$

Estudiamos el signo de la primera derivada:

$$f'(x) > 0$$
 si $2\cos x - 1 > 0 \to \cos x > \frac{1}{2}$ si $x < 60^{\circ}$ y $x > 300^{\circ}$

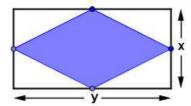
$$f'(x) > 0 \text{ si } x \in \left(0, \frac{\pi}{3}\right) \cup \left(\frac{5\pi}{3}, 2\pi\right)$$

$$f'(x) < 0 \text{ si } x \in \left(\frac{\pi}{3}, \frac{5\pi}{3}\right)$$

Luego
$$x = \frac{\pi}{3}$$
 máximo y $x = \frac{5\pi}{3}$ mínimo

Una segunda forma: Estudiar el valor de estos puntos en la segunda derivada

1.- Se dispone de una tela metálica de 100 metros de longitud para vallar una región rectangular. ¿Cuáles son los valores de x e y, dimensiones del rectángulo, que hacen que el área del romboide, formado por la unión de los puntos medios de los lados, sea máxima?



SOLUCIÓN

Perímetro del rectángulo = 100 m \Rightarrow 100 = 2x + 2y \Rightarrow y = 50 - x

El área del romboide es la mitad que la del área del rectángulo. Por tanto:

Área: A =
$$\frac{xy}{2} = \frac{x(50-x)}{2} = \frac{50x-x^2}{2} \implies A = 25x - \frac{1}{2}x^2$$

$$A' = 25 - x = 0 \Rightarrow x = 25$$

A'' = -1 < 0, , para ese valor hallado se tendrá el máximo buscado. 0

Si
$$x = 25 \Rightarrow y = 25$$

2.- Dada la función $y = \frac{x}{x^2 - 4}$ calcular su dominio de definición, sus intervalos de crecimiento y decrecimiento, sus máximos y mínimos, sus intervalos de concavidad y convexidad y sus puntos de inflexión.

SOLUCIÓN

a) Dom f =
$$\mathbb{R} - \{\pm 2\} (x \in \mathbb{R} / x^2 - 4 \neq 0)$$

b)
$$y = \frac{x}{x^2 - 4} \Rightarrow y' = \frac{x^2 - 4 - x \cdot 2x}{(x^2 - 4)^2} = \frac{-x^2 - 4}{(x^2 - 4)^2}$$

$$y' = -\frac{x^2 + 4}{(x^2 - 4)^2}$$
 \Rightarrow f es siempre decreciente \Rightarrow No tiene máximo ni mínimo

$$y'' = -\frac{2x(x^2 - 4)^2 - (x^2 + 4) \cdot 2(x^2 - 4) \cdot 2x}{(x^2 - 4)^4} = -\frac{2x(x^2 - 4) - (x^2 + 4) \cdot 2 \cdot 2x}{(x^2 - 4)^3} = \frac{2x^3 + 24x}{(x^2 - 4)^3}$$

$$y'' = \frac{2x^3 + 24x}{(x^2 - 4)^3} = 0 \Rightarrow 2x(x^2 + 12) = 0 \text{ si } x = 0$$

$$x < -2 \Rightarrow x^2 - 4 > 0$$
, $x < 0 \Rightarrow y'' < 0 \Rightarrow f$ convexa

$$-2 < x < 0 \Rightarrow x^2 - 4 < 0, x < 0 \Rightarrow y'' > 0 \Rightarrow f cóncava$$

$$0 < x < 2 \Rightarrow x^2 - 4 < 0, x > 0 \Rightarrow y'' < 0 \Rightarrow f convexa$$

$$X > 2 \Rightarrow x^2 - 4 > 0$$
, $x > 0 \Rightarrow y'' > 0 \Rightarrow f$ cóncava

Por tanto, x = 0 P.I.

1.- Dada la función: $f(x) = 1 - \frac{1}{x+1}$, calcula su dominio de definición, sus intervalos de crecimiento y decrecimiento, sus máximos y mínimos, sus intervalos de concavidad y convexidad y puntos de inflexión.

SOLUCIÓN

$$f(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1}$$

- a) Dominio: $\mathbb{R} \{-1\}$ $(x \in \mathbb{R} / x + 1 \neq 0)$
- b) Intervalos de crecimiento y decrecimiento. Máximos y mínimos

$$f(x) = \frac{x}{x+1} \Rightarrow f'(x) = \frac{x+1-x}{(x+1)^2} = \frac{1}{(x+1)^2} > 0$$

f siempre es creciente ⇒ No tiene máximos ni mínimos

c) Intervalos de concavidad y convexidad y puntos de inflexión

$$f'(x) = \frac{1}{\left(x+1\right)^2} \Rightarrow f''(x) = -2(x+1)^{-3} = \frac{-2}{\left(x+1\right)^3} \Rightarrow \begin{cases} x < -1 \rightarrow f'' > 0 \rightarrow \text{c\'oncava} \\ x > -1 \rightarrow f'' < 0 \rightarrow \text{convexa} \end{cases}$$

No tiene puntos de inflexión

2.- Dadas las funciones $f(x) = (x+1)^2$, $g(x) = (x-1)^2$ y h(x) = senx, calcula los siguientes límites: a) $\lim_{x \to 0} \frac{f(x) - 1}{h(x)}$ b) $\lim_{x \to 0} \frac{f(x) - 1}{g(x) - 1}$ c) $\lim_{x \to 0} \frac{f(x) + g(x) - 2}{\left[h(x)\right]^2}$

a)
$$\lim_{x\to 0} \frac{f(x)-1}{h(x)}$$

b)
$$\lim_{x\to 0} \frac{f(x)-1}{g(x)-1}$$

c)
$$\lim_{x\to 0} \frac{f(x)+g(x)-2}{[h(x)]^2}$$

SOLUCIÓN

a)
$$\lim_{x\to 0} \frac{f(x)-1}{h(x)} = \lim_{x\to 0} \frac{(x+1)^2-1}{\sin x} = \lim_{x\to 0} \frac{x^2+2x}{\sin x} = \frac{0}{0}$$

1a forma: (sen x ~ x):
$$\lim_{x \to 0} \frac{x^2 + 2x}{\text{sen}x} = \lim_{x \to 0} \frac{x^2 + 2x}{x} = \lim_{x \to 0} (x + 2) = 2$$

2a forma: L'Hôpital:
$$\lim_{x\to 0} \frac{x^2 + 2x}{\sin x} = \lim_{x\to 0} \frac{2x + 2}{\cos x} = 2$$

b)
$$\lim_{x\to 0} \frac{f(x)-1}{g(x)-1} = \lim_{x\to 0} \frac{(x+1)^2-1}{(x-1)^2-1} = \lim_{x\to 0} \frac{x^2+2x}{x^2-2x} = \frac{0}{0} = \lim_{x\to 0} \frac{x(x+2)}{x(x-2)} = -1$$

c)
$$\lim_{x\to 0} \frac{f(x)+g(x)-2}{[h(x)]^2} = \lim_{x\to 0} \frac{(x+1)^2+(x-1)^2-2}{\sin^2 x} = \lim_{x\to 0} \frac{2x^2}{\sin^2 x} = \frac{0}{0}$$

1ª forma: (sen
$$x \sim x$$
): $\lim_{x \to 0} \frac{2x^2}{\text{sen}^2 x} = \lim_{x \to 0} \frac{2x^2}{x^2} = 2$

2ª forma: L'Hôpital:
$$\lim_{x\to 0} \frac{2x^2}{\text{sen}^2 x} = \lim_{x\to 0} \frac{4x}{2\text{sen}x\cos x} = \lim_{x\to 0} \frac{4x}{\text{sen}2x} = \frac{0}{0} \xrightarrow{\text{Aplicando L'Hopital}}$$

$$\lim_{x\to 0} \frac{4}{2\cos 2x} = \frac{4}{2} = 2$$

1.- Con 60 cm de alambre se construyen dos triángulos equiláteros cuyos lados miden x e y. ¿Qué valores de x e y hacen que la suma de las áreas de los triángulos sea mínima?

SOLUCIÓN

La altura del triángulo de lado x es: $h = \sqrt{x^2 - \frac{\overline{x^2}}{4}} = \frac{\sqrt{3}}{2}x$

La altura del triángulo de lado y es: $h = \sqrt{y^2 - \frac{y^2}{4}} = \frac{\sqrt{3}}{2}y$

Perímetro: $3x + 3y = 60 \Rightarrow x + y = 20 \Rightarrow y = 20 - x$

Área:
$$\frac{1}{2}x\frac{\sqrt{3}}{2}x + \frac{1}{2}y\frac{\sqrt{3}}{2}y = \frac{\sqrt{3}}{4}(x^2 + y^2) = \frac{\sqrt{3}}{4}[x^2 + (20 - x)^2]$$

Área:
$$A = \frac{\sqrt{3}}{2} [x^2 - 20x + 200] \Rightarrow A' = \frac{\sqrt{3}}{2} [2x - 20] = \sqrt{3}(x - 10) = 0 \Rightarrow x = 10$$

A'' = $\sqrt{3}$ > 0, para ese valor de x = 10 se tiene el mínimo buscado.

Por tanto, los lados será x = 10 e y = 10,o sea, dos triángulos equiláteros iguales.

1.- Sea la función: $y = 2\sqrt{\frac{2}{x}} - 1$

a) Indicar su dominio de definición, intervalos de crecimiento y decrecimiento y puntos de inflexión.

SOLUCIÓN

Estudiamos el crecimiento:

$$y = 2\sqrt{\frac{2-x}{x}} \Rightarrow y' = 2\sqrt{\frac{1}{2\sqrt{\frac{2-x}{x}}}} \cdot \frac{-x - (2-x)}{x^2} = \frac{-2}{x^2} \cdot \sqrt{\frac{x}{2-x}}$$

$$y' = \frac{-2}{x^2} \cdot \sqrt{\frac{x}{2 - x}} = -2\sqrt{\frac{x}{(2 - x)x^4}} = -2\sqrt{\frac{1}{(2 - x)x^3}} = -2\sqrt{\frac{1}{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt{2x^3 - x^4}} \rightarrow y' = \frac{-2}{\sqrt{2x^3 - x^4}} = \frac{-2}{\sqrt$$

Teniendo en cuenta que
$$\frac{-2}{x^2} < 0 \Rightarrow y' > 0 \rightarrow \begin{cases} y' > 0 & \text{si } x \in (-\infty,0) \cup (2,+\infty) \to f \uparrow \\ y' < 0 & \text{si } x \in (0,2) \to f \downarrow \end{cases}$$

Luego la función es siempre decreciente ⇒ No tiene máximos ni mínimos.

$$y'' = -\cancel{Z} \frac{-\frac{6x^2 - 4x^3}{\cancel{Z}\sqrt{2x^3 - x^4}}}{2x^3 - x^4} = \frac{6x^2 - 4x^3}{(2x^3 - x^4)\sqrt{2x^3 - x^4}} = \frac{\cancel{x^2}(6 - 4x)}{\cancel{x^2}(2x - x^2)\sqrt{\cancel{x^2}(2x - x^2)}} = \frac{6 - 4x}{\cancel{x}(2x - x^2)\sqrt{2x - x^2}}$$

$$y'' = \frac{6 - 4x}{\cancel{x}(2x - x^2)\sqrt{2x - x^2}} = \frac{4x - 6}{\cancel{x^2}(x - 2)\sqrt{2x - x^2}} = 0 \text{ si } x = \frac{3}{2}$$

4x - 6	_	+	
x – 2	_		
0	3	$\frac{3}{2}$	2

En $x = \frac{3}{2}$ hay cambio de signo de la segunda derivada, por tanto, tiene un punto de inflexión

- 1.- Dada la función $f(x) = x^3 3x$ calcula:
 - a) Su dominio de definición
 - b) Los intervalos de crecimiento y decrecimiento
 - c) Sus máximos, mínimos y puntos de inflexión.

SOLUCIÓN

a) Dom
$$f = \mathbb{R}$$

b)
$$f'(x) = 3x^2 - 3 = 0$$
 si $x^2 - 1 = 0 \Rightarrow x = \pm 1$

$$f'(x) = 3 \; (x-1)(x+1) \Rightarrow \begin{cases} f \uparrow si \; x < -1 \; y \; x > 1 \\ f \downarrow si - 1 < x < 1 \end{cases} \Rightarrow x = x = -1 \; máximo \; y \; x = 1 \; mínimo$$

c)
$$f''(x) = 6x = 0$$
 si $x = 0$

$$f'''(x) = 6 > 0 \Rightarrow x = 0 \text{ P.I.}$$

1.- Sea
$$f(x) = \frac{2}{x-3} - \frac{12}{x^2-9}$$
. Se pide:

a) Dominio de definición, intervalos de crecimiento y decrecimiento.

SOLUCIÓN

a) Dom f =
$$\mathbb{R} - \{\pm 3\}$$

$$f(x) = \frac{2(x+3)-12}{x^2-9} = \frac{2x-6}{x^2-9} = \frac{2}{x+3} \implies f'(x) = \frac{-2}{(x+3)^2} \implies f \text{ es siempre decreciente}$$