Tema 7. Límites y continuidad de funciones

1. Límite de una función en un punto

1.1. Idea inicial

Si una función f está definida para todos los valores de x próximos a a, aunque no necesariamente en el mismo a, entonces, se dice que el límite de f(x) vale l, cuando x tiende a a, si el valor de f(x) se aproxima a l cuando x se aproxima a a.

Se escribe así: $\lim_{x \to a} f(x) = l$. (También $f(x) \to l$, cuando $x \to a$).

Si una función f(x) no tiende a ningún número concreto, cuando x tiende a a, se dice que no tiene límite cuando x tiende a a.

Ejemplos:

Usando la calculadora puede estudiarse el límite, cuando x tiende a 2, de las funciones

a)
$$f(x) = x^2 - 3$$
 b) $g(x) = ENT[x]$ c) $h(x) = \frac{3}{x - 2}$ d) $i(x) = \frac{x - 2}{x^2 - 4}$

Para ello, en todos los casos, se darán a *x* valores próximos a 2 y se calcularán los valores que toma la respectiva función.

a) Para
$$f(x) = x^2 - 3$$
:

	$x \rightarrow 2^-$				$2^+ \leftarrow x$			
x:	1,9	1,99	1,999		2,001	2,01	2,1	
f(x)	0,61	0,9601	0,996001	→1←	1,004001	1,0401	1,41	

 $f(x) = x^3 - 3$

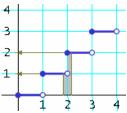
Tanto para valores menores que 2 como para mayores que 2 (en ambos casos próximos a 2), la función toma valores muy próximos a 1.

En este caso se escribe, $\lim_{x\to 2} (x^2 - 3) = 1$.

Observa que la función está definida en x = 2 y que el límite coincide con f(2).

b) Para g(x) = ENT[x] (La parte entera de x se define como el número entero inmediatamente menor o igual a x).

		$x \rightarrow 1$	2-		$2^+ \leftarrow x$			
x:	1,9	1,99	1,999		2,001	2,01	2,1	
g(x)	1	1	1	→ ;? ←	2	2	2	



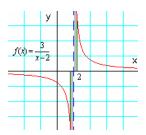
Para valores cercanos y menores que 2, la función toma siempre el valor 1; para valores cercanos y mayores que 2, siempre vale 2. En este caso, lim ENT[x] no existe.

Observa que la función está definida en x = 2 y sin embargo no tiene límite en ese punto.

c) Para
$$h(x) = \frac{3}{x-2}$$
:

		$x \rightarrow 1$	2-		$2^+ \leftarrow x$			
x:	1,9	1,99	1,999		2,001	2,01	2,1	
h(x)	-30	-300	-3000	→;?←	3000	300	30	

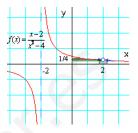
Para valores cercanos y menores que 2, la función toma valores grandes y negativos; para valores cercanos y mayores que 2, la función toma valores cada vez más grandes. En este caso, $\lim_{x \to 2} \frac{3}{x-2}$ no existe.



Observa que la función no está definida en x = 2 y que tampoco tiene límite en ese punto.

d) Para
$$i(x) = \frac{x-2}{x^2-4}$$
:

	$x \rightarrow 2^-$					$2^+ \leftarrow x$		
x:	1,9	1,99	1,999		2,001	2,01	2,1	
i(x)	0,2564	0,2506	0,25006	→ 0,25 ←	0,24994	0,2494	0,2439	



Para valores próximos y menores que 2, la función se acerca cada vez más a 0,25; y lo mismo hace para valores próximos y mayores que 2.

En este caso,
$$\lim_{x\to 2} \frac{x-2}{x^2-4} = 0.25$$
.

Observa que la función no está definida en x = 2 y sin embargo tiene límite en ese punto.

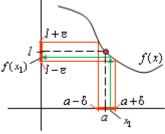
1.2. Definición de límite de una función en un punto

A la vista de los ejemplos anteriores, se concluye:

- 1) Para la existencia del límite de una función en un punto a no importa que la función esté o no definida en ese punto.
- 2) Lo que importa son los valores que toma la función en un entorno de ese punto a.
- 3) Existirá el límite, y su valor será l, cuando todos los puntos próximos a a se transformen, mediante la función, en puntos próximos a l. Esto es, si x_1 está cerca de a, entonces $f(x_1)$ está cerca de *l*. (Véase la figura adjunta.)

Con más precisión:

4) Existirá el límite de f(x), cuando $x \rightarrow a$, y su valor será l, si para cualquier entorno de $l, E_{\varepsilon}(l)$, puede encontrarse otro entorno de a, $E_{\delta}(a)$, de manera que todos los valores de $x \in E_{\delta}(a)$ se transformen, mediante f(x), en puntos de $E_{\varepsilon}(l)$.



$$\lim_{x \to a} f(x) = l \iff \forall \ \epsilon > 0, \ \exists \ \delta > 0 \ \left| \ \forall \ x, \ 0 < \left| x - a \right| < \delta \Longrightarrow \left| f(x) - l \right| < \epsilon$$

Esta expresión se lee así: "límite de f(x) cuando x tiende a a es igual a l", equivale a decir que "para todo número épsilon mayor que cero, existe un número delta, también mayor que 0, tal que para todo x que cumpla que su diferencia con a, en valor absoluto, sea mayor que 0 y menor que delta, se cumple que la diferencia entre f(x) y l, también en valor absoluto, es menor que el número épsilon elegido".

La condición, 0 < |x - a|, indica que x no toma el valor a, pues en tal caso x - a = 0.

La condición, $|x-a| < \delta$, indica que $x \in E_{\delta}(a)$.

La conclusión, $|f(x) - l| < \varepsilon$, significa que $f(x) \in E_{\varepsilon}(l)$.

Observación: El concepto de límite es el más importante del cálculo infinitesimal, y uno de los más difíciles. Para ayudar a comprenderlo se plantea y resuelve el siguiente ejercicio.

Ejercicio: Demuestra, aplicando la definición, que $\lim_{x\to 2} (x^2 - 3) = 1$.

Solución:

Hay que ver que para cualquier $\varepsilon > 0$, existe $\delta > 0$ tal que si $|x-2| < \delta$, entonces $|(x^2-3)-1| < \varepsilon$.

Como
$$|(x^2 - 3) - 1| < \varepsilon \Leftrightarrow |x^2 - 4| < \varepsilon \Rightarrow -\varepsilon < x^2 - 4 < \varepsilon \Rightarrow$$
 (transformando la desigualdad)
 $\Rightarrow 4 - \varepsilon < x^2 < 4 + \varepsilon \Rightarrow \sqrt{4 - \varepsilon} < x < \sqrt{4 + \varepsilon}$.

Por tanto, tomando $\delta < \min$ de $\left\{2 - \sqrt{4 - \epsilon}, \sqrt{4 + \epsilon} - 2\right\}$ se cumple que $\left|(x^2 - 3) - 1\right| < \epsilon$.

Luego, efectivamente, el límite vale 1.

Por ejemplo, si se toma $\varepsilon = 0.1$, el valor de δ puede ser cualquier número menor que 0.02485, pues $\delta < \min$ de $\left\{2 - \sqrt{4 - 0.1}, \sqrt{4 + 0.1} - 2\right\} = \min\{0.02516, 0.02485\}$. Si se elige $\delta = 0.2$, para todo x tal que $\left|x - 2\right| < 0.02 \Leftrightarrow 1.98 < x < 2.02$, se cumple que $\left|(x^2 - 3) - 1\right| < 0.1$.

1.3. Límites laterales

En la definición de límite no se distingue entre las posibilidades x < a o x > a, pues al escribir $0 < |x - a| < \delta$ resulta indiferente: lo único que se pide es que x este próximo a a. No obstante, algunas veces conviene distinguir si $x \to a$ por la izquierda (siendo x < a), que se escribe $x \to a^-$; o si $x \to a$ por la derecha (siendo x > a), denotado por $x \to a^+$.

Esta distinción da lugar al estudio de los límites laterales.

- A $\lim_{x\to a^-} f(x)$ se le llama límite lateral por la izquierda.
- A $\lim_{x \to a^+} f(x)$ se le llama límite lateral por la derecha.

Observación:

Este estudio tiene interés cuando:

- 1) La función está definida a trozos y se quiere calcular el límite en alguno de los puntos de unión de los diferentes trozos.
- 2) La función tiene asíntotas verticales y se quiere determinar la posición de la curva respecto a ellas.

Pues bien, para que exista el límite de una función en un punto es necesario que existan los limites laterales y que sean iguales. Esto es, para que exista $\lim_{x \to a} f(x) = l$ es necesario que

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = l.$$

Ejemplo:

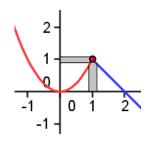
Para estudiar el límite de la función $f(x) = \begin{cases} x^2, & \text{si } x < 1 \\ 2 - x, & \text{si } x \ge 1 \end{cases}$ en el

punto x = 1 es necesario considerar los límites laterales.

Por la izquierda: $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} = 1$

Por la derecha: $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (2-x) = 1$

Como ambos límites coinciden, existe el límite y vale 1.



2. Cálculo práctico de límites

2.1. Casos inmediatos

Si f(x) es una función usual (polinómicas, racionales, logarítmicas, etc.) y está definida en el punto x = a, suele cumplirse que: $\lim_{x \to a} f(x) = f(a)$. Esto es, el límite se resuelve sustituyendo.

Observaciones:

- 1) Que la función pueda evaluarse en x = a no es determinante para que exista el límite (no es ni necesario ni suficiente), como se vio con la función g(x) = ENT[x], pero este es un caso de función definida a trozos, que debe ser estudiado mediante límites laterales.
- 2) No obstante, lo primero que debe hacerse para calcular un límite es sustituir x por a: hallar f(a). Si existe f(a) y la función no está definida a trozos, se aceptará que lím f(x) = f(a).
- 3) Como el lector sabrá, las funciones que cumplen que $\lim_{x\to a} f(x) = f(a)$, se llaman continuas. Se estudiarán más adelante.

Ejemplos:

Lo dicho puede comprobarse en los siguientes casos:

a)
$$\lim_{x \to 2} (x^2 - 3) = 2^2 - 3 = 1$$
.

b)
$$\lim_{x\to 2} \frac{x+1}{x-1} = \frac{2+1}{2-1} = 3$$
.

a)
$$\lim_{x \to 2} (x^2 - 3) = 2^2 - 3 = 1$$
.
b) $\lim_{x \to 2} \frac{x+1}{x-1} = \frac{2+1}{2-1} = 3$.
c) $\lim_{x \to 5} \sqrt{2x^2 - 1} = \sqrt{2 \cdot 5^2 - 1} = \sqrt{49} = 7$.
d) $\lim_{x \to 0} 2^x = 2^0 = 1$.
e) $\lim_{x \to 3} (\ln(x^2 - 2)) = \ln(3^2 - 2) = \ln 7$.
f) $\lim_{x \to 2} \frac{x+2}{x^2 - 2} = \frac{0}{2} = 0$.

d)
$$\lim_{x\to 0} 2^x = 2^0 = 1$$
.

e)
$$\lim_{x \to 2} (\ln(x^2 - 2)) = \ln(3^2 - 2) = \ln 7$$

f)
$$\lim_{x \to -2} \frac{x+2}{x^2-2} = \frac{0}{2} = 0$$

g) Esto no es así en el caso
$$\lim_{x \to -1} \frac{x+1}{x^2-1}$$
, pues $f(x) = \frac{x+1}{x^2-1}$ no está definida en $x = -1$.

2.2. Algunas propiedades de las operaciones con límites

En relación con las operaciones algebraicas pueden aplicarse las siguientes propiedades.

Si
$$\lim_{x \to a} f(x) = A$$
 y $\lim_{x \to a} g(x) = B$, con A y B finitos, entonces:
1) $\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = A \pm B$;

1)
$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} (x) \pm \lim_{x \to a} g(x) = A \pm B$$
;

2)
$$\lim_{x \to a} (f(x) \cdot g(x)) = \left(\lim_{x \to a} f(x)\right) \cdot \left(\lim_{x \to a} g(x)\right) = A \cdot B;$$

3)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{A}{B}, (B \neq 0)$$

4) Si
$$f(x) > 0$$
, $\lim_{x \to a} (f(x))^{g(x)} = \lim_{x \to a} f(x) \int_{x \to a}^{\lim g(x)} f(x) dx$

5) Si
$$f(x) > 0$$
, $\lim_{x \to a} (\log_b f(x)) = \log_b (\lim_{x \to a} f(x)) = \log_b A$

- 1) El límite de una suma es igual a la suma de los límites.
- 2) El límite de un producto es igual al producto de los límites.
- 3) El límite de un cociente es igual al cociente de los límites.
- 4) El límite de una potencia es igual a la potencia de los límites.
- 5) El límite de un logaritmo es igual al logaritmo del límite.

Estas propiedades se aplican en ambos sentidos (de izquierda a derecha o de derecha a izquierda), según convenga.

3. Indeterminaciones

Hay siete casos en los que al sustituir el valor x = a en la función dada se llega a situaciones extrañas, no definidas, que reciben el nombre de indeterminaciones: formas indeterminadas. Escritas esquemáticamente, estas 7 indeterminaciones son:

$$\begin{bmatrix} \frac{0}{0} \end{bmatrix} \quad \begin{bmatrix} \frac{\infty}{\infty} \end{bmatrix} \quad [0 \cdot \infty] \quad [\infty - \infty] \quad [1^{\infty}] \quad [0^{0}] \quad [\infty^{0}]$$

Observaciones:

1) Cuando en estas expresiones se escribe 0 se quiere significar que se está ante un valor tan pequeño como se quiera (infinitesimal). El concepto matemático que lo define es el de <u>infinitésimo</u>. Así, se dice que f(x) es un <u>infinitésimo en el punto x = a si $\lim_{x \to a} f(x) = 0$.</u>

Por tanto, la indeterminación $\left\lceil \frac{0}{0} \right\rceil$ es el cociente de dos infinitésimos. Surge si se plantea un

límite como el siguiente:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \left[\frac{0}{0}\right]$$
; esto es, cuando $f(x)$ y $g(x)$ son

infinitésimos en el punto x = a.

(Este concepto se completará más adelante, al estudiar la regla de L'Hôpital). Igualmente, en las demás indeterminaciones, cada vez que se escribe 0 se está diciendo que la función es un infinitésimo en el punto en cuestión.

- 2) Análogamente, cuando se escribe 1 se quiere indicar una expresión que tiende a 1, que toma los valores 0,999... o 1,000..., sin que necesariamente tome nunca el valor 1.
- 3) Por último, cuando se escribe ∞ se quiere significar que la expresión toma valores tan grandes como se quiera: mayores (en valor absoluto) que cualquier número dado.

Ejemplos:

En los límites siguientes, al sustituir, aparecen las formas que se indican.

a)
$$\lim_{x \to -1} \frac{x+1}{x^2 - 1} = \left[\frac{0}{0} \right]$$
.

b)
$$\lim_{x \to \infty} \frac{2x^2 + 5x}{x^2 - 5} = \left[\frac{\infty}{\infty}\right].$$

c)
$$\lim_{x \to +\infty} \left(\frac{1}{x-2} \cdot e^{x-2} \right) = \left[0 \cdot \infty \right]$$

a)
$$\lim_{x \to -1} \frac{x+1}{x^2 - 1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
.
b) $\lim_{x \to \infty} \frac{2x^2 + 5x}{x^2 - 5} = \begin{bmatrix} \infty \\ \infty \end{bmatrix}$.
c) $\lim_{x \to +\infty} \left(\frac{1}{x-2} \cdot e^{x-2} \right) = \begin{bmatrix} 0 \cdot \infty \end{bmatrix}$.
d) $\lim_{x \to 3} \left(\frac{2x}{x-3} - \frac{x^2 + 1}{x^2 - 9} \right) = [\infty - \infty]$.

e)
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x} \right)^x = \left[1^{\infty} \right]$$
. f) $\lim_{x \to 0^+} x^x = \left[0^0 \right]$. g) $\lim_{x \to \infty} \left(x^2 + 4 \right)^{1/\ln x} = \left[\infty^0 \right]$.

f)
$$\lim_{x \to 0^+} x^x = [0^0]$$

g)
$$\lim_{x\to\infty} (x^2+4)^{1/\ln x} = [\infty^0].$$

- Algunas veces estas formas indeterminadas pueden resolverse. Los métodos de resolución están muy estudiados y se concretan en los siguientes procedimientos:
- 1) Algebraicos. Consisten en aplicar las propiedades de las operaciones con límites y, cuando estas sean insuficientes, recurrir a transformaciones algebraicas en la función dada: simplificar, extraer factor común, sumar o restar, operar con potencias y raíces, con logaritmos...

Aquí se aplicará este método en formas de los tipos: $\left| \frac{0}{0} \right|, \left| \frac{\infty}{\infty} \right|, [\infty - \infty], [0 \cdot \infty] \text{ y } [1^{\infty}].$

2) Regla de L'Hôpital, dando así entrada al cálculo infinitesimal. Se verá en otro tema. Allí se resolverán las 7 formas indeterminadas.

3.1. Límites de funciones racionales cuando $x \to a$. Indeterminación $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Las funciones racionales son de la forma $f(x) = \frac{P(x)}{Q(x)}$, siendo P(x) y Q(x) polinomios. El

único caso de límite no inmediato es cuando da lugar a la indeterminación $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Esto es,

cuando
$$P(a) = 0$$
 y $Q(a) = 0$, pues $\lim_{x \to a} \frac{P(x)}{Q(x)} = \left[\frac{0}{0}\right]$.

Este caso puede resolverse simplificando la expresión inicial, pues si P(a) = 0 y Q(a) = 0, se verifica que $P(x) = (x - a)P_1(x)$ y $Q(x) = (x - a)Q_1(x)$, de donde el cociente

$$\frac{P(x)}{Q(x)} = \frac{(x-a)P_1(x)}{(x-a)Q_1(x)} = \frac{P_1(x)}{Q_1(x)}.$$

Luego:
$$\lim_{x \to a} \frac{P(x)}{Q(x)} = \left[\frac{0}{0} \right] = \lim_{x \to a} \frac{(x - a)P_1(x)}{(x - a)Q_1(x)} = \lim_{x \to a} \frac{P_1(x)}{Q_1(x)}$$

Si el último límite no resulta inmediato se aplica nuevamente la regla anterior.

<u>Observación</u>: El teorema del factor dice: Para un polinomio P(x), si $P(a) = 0 \Leftrightarrow x - a$ es un factor de $P(x) \Leftrightarrow P(x) = (x - a)P_1(x)$. El polinomio $P_1(x)$ se obtiene dividiendo.

Ejemplo:

El $\lim_{x\to 2} \frac{x-2}{x^2-4}$, que no resulta inmediato, puede resolverse así:

$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4} = \left[\frac{0}{0} \right] = \lim_{x \to 2} \frac{x - 2}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{1}{x + 2} = \frac{1}{2 + 2} = \frac{1}{4}.$$

• El caso
$$\frac{k}{0}$$

Cuando al hacer cualquier límite aparezca la expresión $\frac{k}{0}$ (esto es, $\lim_{x\to a} f(x) = \frac{k}{0}$), se pondrá

que el valor de ese límite es infinito. Esto significa que, aunque el límite no existe, el valor de la función se hace tan grande como se quiera, infinitamente grande.

En estos casos es conveniente estudiar los límites laterales en el punto, pues con frecuencia se obtienen signos distintos para el infinito.

Observación:

Cuando $\lim_{x\to a} f(x) = \infty$, la función f(x) tiene una <u>asíntota vertical</u> en x = a: la recta x = a.

Eiemplos:

a)
$$\lim_{x\to 2} \frac{3x-1}{x^2-4} = \left[\frac{5}{0}\right] = \infty$$
. También puede ponerse $\pm \infty$. Igualmente $\lim_{x\to -2} \frac{3x-1}{x^2-4} = \left[\frac{-7}{0}\right] = \pm \infty$.

b) $\lim_{x\to 0} \frac{3x-1}{x^2} = \left[\frac{-1}{0}\right] = -\infty$, pues cuando $x\to 0$ el numerador es negativo y el denominador positivo, tanto a la izquierda como a la derecha del 0.

c) Para $h(x) = \frac{3}{x-2}$, que no está definida en x = 2, se tiene que $\lim_{x \to 2} \frac{3}{x-2} = \left[\frac{3}{0}\right] = \infty$.

Si en este caso se estudian los límites laterales se cumple:

$$\rightarrow$$
 por la izquierda: $\lim_{x\to 2^-} \frac{3}{x-2} = -\infty$.

$$\rightarrow$$
 por la derecha: $\lim_{x\to 2^+} \frac{3}{x-2} = +\infty$.

El signo – o + se decide por los signos del numerador y denominador. Geométricamente, estos resultados indican que la curva asociada a la función se va hacia $-\infty$ por la izquierda de 2; y hacia $+\infty$ por la derecha de x = 2. (Esto equivale a decir que la recta x = 2 es una asíntota vertical.) Observación:

Es frecuente confundir los casos $\frac{0}{k}$ y $\frac{k}{0}$. El primero vale 0: $\frac{0}{k} \Leftrightarrow 0$ entre algo = 0.

3.2. La indeterminación $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ en funciones con raíces

En las <u>funciones con radicales</u>, la indeterminación $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ puede resolverse de dos formas:

- 1) Descomponiendo en factores y simplificando, como para las funciones racionales.
- 2) Multiplicando y dividiendo la función dada por la expresión conjugada de alguno de sus términos. A continuación se opera y simplifica.

Observaciones:

Como las funciones con radicales de índice par no están definidas para valores negativos del radicando habrá que tenerlo en cuenta al plantear y resolver los límites. Así, por ejemplo el

$$\lim_{x\to 3} \sqrt{\frac{x}{x-3}}$$
 sólo puede plantearse por la derecha de $x=3$, pues $f(x)=\sqrt{\frac{x}{x-3}}$ no está

definida cuando $x \to 3^-$. Por tanto, este límite habría que plantearlo así: $\lim_{x \to 3^+} \sqrt{\frac{x}{x-3}}$ y su valor sería ∞ .

Ejemplos:

a)
$$\lim_{x \to 3} \sqrt{\frac{x-3}{x^2 - 2x - 3}} = \left[\frac{0}{0} \right] = \lim_{x \to 3} \sqrt{\frac{x-3}{(x-3)(x+1)}} = \lim_{x \to 3} \sqrt{\frac{1}{x+1}} = \sqrt{\frac{1}{4}} = \frac{1}{2}.$$

- b) Para la misma función, el límite $\lim_{x\to -1} \sqrt{\frac{x-3}{x^2-2x-3}}$ sólo puede calcularse por la derecha, cuando $x\to -1^+$, pues la función no está definida para valores de x<-1. (Su valor es $+\infty$).
- c) $\lim_{x \to 1} \frac{2\sqrt{x} 2}{x^2 1} = \left[\frac{0}{0}\right] = \lim_{x \to 1} \frac{\left(2\sqrt{x} 2\right)\left(2\sqrt{x} + 2\right)}{\left(x^2 1\right)\left(2\sqrt{x} + 2\right)} = \lim_{x \to 1} \frac{4(x 1)}{(x 1)(x + 1)\left(2\sqrt{x} + 2\right)} = \lim_{x \to 1} \frac{4}{(x + 1)(2\sqrt{x} + 2)} = \frac{1}{2}.$

4. Límite de una función cuando $x \rightarrow \infty$

Antes de estudiar estos límites conviene recordar algunos resultados de las operaciones relacionadas con el infinito.

$$\begin{array}{lll} \infty+\infty=\infty; & -\infty-\infty=-\infty; & [\infty-\infty] \text{ es indeterminado.} \\ \infty\pm k=\infty; & -\infty\pm k=-\infty; & (+k)\cdot\infty=\infty; & (-k)\cdot\infty=-\infty; \\ \infty\cdot \infty=\infty; & \infty\cdot(-\infty)=-\infty; & \infty/(\pm k)=\pm\infty; & \pm k/(\pm\infty)=0; \\ \infty^{(+k)}=\infty; & \infty^{(-k)}=0; & [\infty/\infty] \text{ es indeterminado.} \end{array}$$

En todos los casos + k indica un número positivo fijo (- k, negativo); y cuando se escribe ∞ sin signo, se supone positivo.

4.1. Límite finito de una función cuando $x \to \infty$

La función
$$f(x) = \frac{2x-1}{x+8}$$
 tiende a 2 cuando $x \to +\infty$.

Efectivamente, si x = 1000, f(1000) = 1,983; si x = 10000, f(10000) = 1,9995.

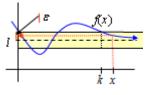
Se escribe,
$$\lim_{x \to +\infty} \frac{2x-1}{x+8} = 2$$
.

La definición precisa es la siguiente:

definition precisa es la signiente:

$$\lim_{x \to +\infty} f(x) = l \iff \forall \ \epsilon > 0, \ \exists \ k \ (\text{grande}) \ | \ \forall \ x > k \implies |f(x) - l| < \epsilon$$
ara valores de $x > k$ la función no se sale de la franja marcada.)

(Para valores de x > k la función no se sale de la franja marcada.)



Si $x \rightarrow -\infty$ la definición es análoga:

$$\lim_{x \to -\infty} f(x) = l \iff \forall \ \epsilon > 0, \ \exists \ k \ (\text{grande y negativo}) \ | \ \forall \ x > k \implies |f(x) - l| < \epsilon$$

Esta definición se lee así: "límite de f(x) cuando x tiende a ∞ es igual a l", equivale a decir que "para todo número épsilon mayor que cero, existe un k grande, tal que para todo x mayor que k, se cumple que la diferencia entre f(x) y l, es menor que el número épsilon elegido". Observación:

 $\overline{\text{Si } l \text{im } f(x)} = l$ se concluye que la recta y = l es una <u>asíntota horizontal</u> de la curva y = f(x).

Ejemplo:

Como se ha visto anteriormente, $\lim_{x\to +\infty} \frac{2x-1}{x+8} = 2$. Por tanto, la recta y=2 es una asíntota

horizontal de
$$f(x) = \frac{2x-1}{x+8}$$
.

4.2. Límite infinito de una función cuando $x \to \infty$

La función $f(x) = \frac{x^2 - 2x}{x - 3}$ toma valores cada vez más grandes cuando $x \to \infty$.

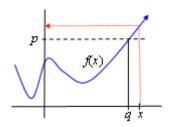
Efectivamente, si x = 100, f(100) = 101,03; si x = 1000, f(1000) = 1001,003.

Se escribe:
$$\lim_{x \to +\infty} \frac{x^2 - 2x}{x - 3} = +\infty$$
.

La definición precisa es la siguiente:

$$\lim_{x \to +\infty} f(x) = +\infty \iff \forall \ p \text{ (grande)}, \ \exists \ q \text{ (grande)} \mid \forall \ x > q \implies f(x) > p$$

Esta definición se lee así: "límite de f(x) cuando x tiende a $+\infty$ es igual a $+\infty$ ", equivale a decir que "para todo número p (grande), existe otro número q (también grande), tal que para todo x mayor que q, se cumple que la diferencia entre f(x) es mayor que p elegido".



El resultado de estos límites muchas veces resulta inmediato, pues para calcularlos basta con sustituir y aplicar las operaciones con el infinito.

Ejemplos:

a)
$$\lim_{x \to \infty} (x^2 - 5x + 1) = \lim_{x \to \infty} \left(x \left(x - 5 + \frac{17}{x} \right) \right) = \infty$$
 b) $\lim_{x \to \infty} (x^3 + 3x^2 - 2x + 5) = -\infty$

b)
$$\lim_{x \to -\infty} (x^3 + 3x^2 - 2x + 5) = -\infty$$

c)
$$\lim_{x \to +\infty} (\ln(3x+8)) = +\infty$$

d)
$$\lim_{x \to -\infty} \sqrt[3]{x^3 - 2x} = -\infty$$

4.3. Límites de funciones racionales cuando $x \to \infty$. Indeterminación $\left| \frac{\infty}{\infty} \right|$

Si P(x) y Q(x) son dos polinomios, al calcular $\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)}$ se obtendría la expresión

indeterminada $\left|\frac{\infty}{\infty}\right|$; no obstante se resuelve muy fácilmente, pues su valor depende de los grados de P(x) y Q(x):

- Si grado de P(x) >grado de Q(x), $\lim_{x \to \pm \infty} \frac{P(x)}{O(x)} = \pm \infty$.
- Si grado de P(x) = grado de Q(x), $\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)} = \frac{a_n}{b_n}$, siendo a_n y b_n los coeficientes principales de P(x) y Q(x), respectivamente
- Si grado de P(x) < grado de Q(x), $\lim_{x \to \pm \infty} \frac{P(x)}{O(x)} = 0$.

Un procedimiento para justificar estos resultados consiste en dividir el numerador y el denominador de la función dada por la mayor potencia de x presente en la expresión, como se hace el ejemplo b) siguiente. Además, en todos los casos se tendrán en cuenta los signos.

Ejemplos:

a)
$$\lim_{x \to +\infty} \frac{x^2 - 2x}{2x^3 - 100} = 0$$

b)
$$\lim_{x \to +\infty} \frac{-3x^2 + 4x}{2x^2 + 3} = \lim_{x \to +\infty} \frac{\frac{-3x^2}{x^2} + \frac{4x}{x^2}}{\frac{2x^2}{x^2} + \frac{3}{x^2}} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{2 + \frac{3}{x^2}} = -\frac{3}{2}$$

c)
$$\lim_{x \to +\infty} \frac{x^3 - 7}{5x + 19} = +\infty$$

d)
$$\lim_{x \to +\infty} \frac{4}{x^2 - 2x + +3} = 0$$

e)
$$\lim_{x \to -\infty} \frac{2x^3 - 2x}{x^3 + 4x^2 + 2} = 2$$

f)
$$\lim_{x \to -\infty} \frac{x^3 - x}{4x^2 + 2} = -\infty$$

4.4. La indeterminación $\left\lceil \frac{\infty}{\infty} \right\rceil$ en funciones con raíces

En las funciones con radicales, la indeterminación $\left[\frac{\infty}{\infty}\right]$ puede resolverse aplicando la

comparación de grados, teniendo en cuenta que al aparecer raíces los exponentes pueden ser fraccionarios.

Ejemplos:

a)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 3x + 1}}{\sqrt{4x^2 + 6}} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to \infty} \sqrt{\frac{x^2 - 3x + 1}{4x^2 + 6}} = \sqrt{\lim_{x \to \infty} \frac{x^2 - 3x + 1}{4x^2 + 6}} = \sqrt{\frac{1}{4}} = \frac{1}{2}.$$

b)
$$\lim_{x \to \infty} \frac{2x^2 + 3x}{\sqrt{x^3 + 5x - 3}} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to \infty} \frac{\frac{2x^2 + 3x}{x^2}}{\frac{\sqrt{x^3 + 5x - 3}}{x^2}} = \lim_{x \to \infty} \frac{2 + \frac{3}{x}}{\sqrt{\frac{x^3 + 5x - 3}{x^4}}} = \left[\frac{2}{0}\right] = \infty.$$

4.5. La indeterminación $[1^{+\infty}]$. El número e

El número e se define como el límite, cuando $x \to +\infty$, de la función $f(x) = \left(1 + \frac{1}{x}\right)^x$. Esto

es:
$$\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^x = e$$
.

Aplicando esta definición y las propiedades algebraicas de los límites, pueden darse otros resultados relaciones con el número *e*. Por ejemplo:

1)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{px} = e^p$$
 2) $\lim_{x \to +\infty} \left(1 + \frac{1}{px} \right)^{px} = e$ 3) $\lim_{x \to +\infty} \left(1 + \frac{p}{x} \right)^x = e^p$

En general,
$$\lim_{A(x)\to +\infty} \left(1 + \frac{1}{A(x)}\right)^{A(x)} = e$$
.

- Como consecuencia de lo anterior, también puede definirse: $\lim_{x\to 0^+} (1+x)^{\frac{1}{x}} = e$.
- Otra forma de resolver estos límites es aplicar la transformación:

$$\lim_{x \to \infty} \left(f(x)^{g(x)} \right) = \left[1^{\infty} \right] = e^{\left(\lim_{x \to \infty} \left(f(x) - 1 \right) \cdot g(x) \right)}$$

Ejemplos:

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{3x} = \left(\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x \right)^3 = e^3$$
 b) $\lim_{x \to +\infty} \left(1 - \frac{1}{x} \right)^x = \left(\lim_{x \to +\infty} \left(1 + \frac{1}{(-x)} \right)^{(-x)} \right)^{-1} = e^{-1}$.

c)
$$\lim_{x \to +\infty} \left(1 - \frac{2}{x} \right)^x = \lim_{x \to +\infty} \left(1 + \frac{(-2)}{x} \right)^x = \left[\lim_{x \to +\infty} \left(1 + \frac{1}{x/(-2)} \right)^{x/(-2)} \right]^{(-2)} = e^{-2}.$$

d)
$$\lim_{x \to +\infty} \left(\frac{x^2 + 2x}{x^2 + 4} \right)^{\frac{3x^2}{x - 6}} = e^{\lim_{x \to +\infty} \left(\frac{x^2 + 2x}{x^2 + 4} - 1 \right) \left(\frac{3x^2}{x - 6} \right)} = e^{\lim_{x \to +\infty} \left(\frac{2x - 4}{x^2 - 4} \right) \left(\frac{3x^2}{x - 6} \right)} = e^{\lim_{x \to +\infty} \left(\frac{6x^3 - 12x^2}{x^3 - 6x^2 - 4x + 24} \right)} = e^{6}$$

4.6. Comportamiento de otras funciones en el infinito

El límite cuando $x \to \infty$ de las funciones exponenciales, logarítmicas y trigonométricas se calcula como sigue.

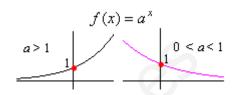
Funciones exponenciales

Además de de las propiedades usuales (de la potenciación) se emplea las dos siguientes:

Si
$$f(x) = a^{g(x)}$$
, con $a > 0$, entonces: $\lim_{x \to \infty} a^{g(x)} = a^{\lim_{x \to \infty} g(x)}$

Si
$$f(x) > 0$$
, $\lim_{x \to a} (f(x))^{g(x)} = \lim_{x \to a} f(x) \Big|_{x \to a}^{\lim g(x)} \Big|_{x \to a}$.

En este contexto viene bien recordar la representación gráfica de las funciones exponenciales elementales.



Ejemplos:

a)
$$\lim_{x \to +\infty} e^{x-2} = e^{+\infty} = +\infty$$

b)
$$\lim_{x \to -\infty} 2^{3x} = 2^{-\infty} = 0$$

c)
$$\lim_{x \to -\infty} e^{x+1} = e^{-\infty} = 0$$

b)
$$\lim_{x \to -\infty} 2^{3x} = 2^{-\infty} = 0$$

d) $\lim_{x \to \pm \infty} e^{-x^2} = e^{-\infty} = 0$

e)
$$\lim_{x \to +\infty} \left(\frac{4x-1}{2x+3} \right)^{\frac{x-2}{x^2}} = \lim_{x \to +\infty} \left(\frac{4x-1}{2x+3} \right)^{\frac{1}{x} + \infty} = 2^0 = 1$$
 f) $\lim_{x \to +\infty} x^{x-3} = +\infty^{+\infty} = +\infty$

f)
$$\lim_{x \to +\infty} x^{x-3} = +\infty^{+\infty} = +\infty$$

• Funciones logarítmicas

La propiedad particular que puede aplicarse aquí es: $\lim_{x \to a} (\log_a f(x)) = \log_a (\lim_{x \to a} f(x))$.

Ejemplos:

a)
$$\lim_{x \to +\infty} \log \left(\frac{10x}{x+5} \right) = \log \left(\lim_{x \to +\infty} \frac{10x}{x+5} \right) = \log 10 = 1$$
.

b)
$$\lim_{x \to +\infty} \ln \left(\frac{2x}{x^2 + 1} \right) = \ln \left(\lim_{x \to +\infty} \frac{2x}{x^2 + 1} \right) = \ln(0^+) = -\infty.$$

Funciones trigonométricas

En ningún caso existen los límites en el infinito. Esto es: $\lim_{x \to \pm \infty} x$, $\lim_{x \to \pm \infty} \cos x$ y $\lim_{x \to \pm \infty} \tan x$ no existen, ya que dichas funciones son periódicas (repiten indefinidamente su comportamiento.) Para funciones compuestas hay que determinarlo en cada caso.

Ejemplos:

a)
$$\lim_{x\to\pm\infty} \frac{\sin x}{x^2+x+1} = 0$$
, pues $-1 \le \sin x \le 1$, mientras que el denominador tiende a ∞ .

b)
$$\lim_{x \to \pm \infty} x \cos^2 x$$
 no existe. Como $0 \le \cos^2 x \le 1$, $f(x) = x \cos^2 x$ tomará valores entre 0 y x.

c) Como se dijo en su momento, la función $f(x) = \tan x$ tiene un comportamiento asintótico

cuando
$$x \to \frac{\pi}{2} + k\pi$$
, $k \in \mathbb{Z}$, cumpliéndose que $\lim_{x \to \frac{\pi}{2} + k\pi} \tan x = \infty$. Por tanto, las rectas

 $x = \frac{\pi}{2} + k\pi$ son asíntotas verticales de la función.

4.7. La indeterminación de la forma $[\infty - \infty]$

Cuando se plantea la indeterminación $[\infty - \infty]$, tanto cuando $x \to a$ como cuando $x \to \infty$, el procedimiento general consiste en operar la expresión inicial hasta transformarla en otra expresión no indeterminada o en otra forma indeterminada del tipo $\left[\frac{0}{0}\right]$ o $\left[\frac{\infty}{\infty}\right]$. Estas otras formas se resolverían por cualquiera de los métodos vistos anteriormente.

Ejemplos:

a)
$$\lim_{x\to 3} \left(\frac{2x}{x-3} - \frac{x^2+1}{x^2-9} \right)$$
 es una forma indeterminada del tipo $[\infty - \infty]$.

Para transformarla se opera la expresión dada: se hace la resta. Así:

$$\lim_{x \to 3} \left(\frac{2x}{x - 3} - \frac{x^2 + 1}{x^2 - 9} \right) = \lim_{x \to 3} \left(\frac{(2x - 3)(x + 3)}{(x - 3)(x + 3)} - \frac{x^2 + 1}{x^2 - 9} \right) = \lim_{x \to 3} \left(\frac{2x^2 + 3x - 9}{x^2 - 9} - \frac{x^2 + 1}{x^2 - 9} \right) = \lim_{x \to 3} \left(\frac{x^2 + 3x - 10}{x^2 - 9} \right) = \left[\frac{8}{0} \right] = \infty.$$

b)
$$\lim_{x \to \infty} \left(\frac{2x^2 - 3}{2x - 3} - \frac{x^2 + 5x}{x + 2} \right) = [\infty - \infty].$$

Para transformarla se opera como en el ejemplo anterior. Así:

$$\lim_{x \to \infty} \left(\frac{2x^2 - 3}{2x - 3} - \frac{x^2 + 5x}{x + 2} \right) = \lim_{x \to 3} \left(\frac{(2x^2 - 3)(x + 2) - (2x - 3)(x^2 + 5x)}{(2x - 3)(x + 2)} \right) = \lim_{x \to \infty} \left(\frac{-3x^2 + 12x - 6}{2x^2 - +x - 6} \right) = \left[\frac{-\infty}{\infty} \right] = -\frac{3}{2}.$$

c)
$$\lim_{x \to \infty} (\sqrt{x^2 + x} - \sqrt{x^2 - x}) = [\infty - \infty] = \lim_{x \to \infty} \frac{(\sqrt{x^2 + x} - \sqrt{x^2 - x})\sqrt{x^2 + x} + \sqrt{x^2 - x})}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + x} + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{$$

4.8. La indeterminación de la forma $[0 \cdot \infty]$

Para terminar este apartado de límites se plantea la indeterminación $[0\cdot\infty]$. Para resolverla suele dar resultado operar la expresión inicial hasta transformarla en otra expresión no indeterminada o en otra forma indeterminada del tipo $\left[\frac{0}{0}\right]$ o $\left[\frac{\infty}{\infty}\right]$.

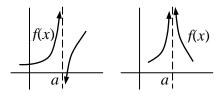
Ejemplo:

$$\lim_{x \to \infty} \left(\frac{x^2 + 5x}{x + 2} \cdot \frac{3x}{x^3 - 1} \right) = [\infty \cdot 0]. \text{ Para transformarla basta con operar. Asi:}$$

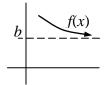
$$\lim_{x \to \infty} \left(\frac{x^2 + 5x}{x + 2} \cdot \frac{3x}{x^3 - 1} \right) = [\infty \cdot 0] = \lim_{x \to \infty} \left(\frac{3x^3 + 15x^2}{x^4 + 2x^3 - x - 2} \right) = 0.$$

5. Aplicación del cálculo de límites a la determinación de las asíntotas de una función

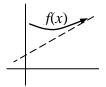
Las asíntotas de una curva son rectas hacia las cuales tiende a *pegarse* la gráfica de la función. Pueden ser verticales, horizontales u oblicuas.



Asíntotas verticales



Asíntota horizontal



Asíntota oblicua

Los <u>criterios</u> para determinar las asíntotas de una curva son:

- La recta x = a es una asíntota vertical de la curva y = f(x) si $\lim_{x \to a} f(x) = \infty$.
- La recta y = b es una asíntota horizontal de la curva y = f(x) si $\lim_{x \to \infty} f(x) = b$.
- La recta y = mx + n es una asíntota oblicua de la curva y = f(x) si:

$$\lim_{x\to\infty}\frac{f(x)}{x}=m\,,\,(m\neq0\;\mathrm{y}\;m\neq\infty);\qquad \lim_{x\to\infty}(f(x)-mx)=n\,,\,(n\neq\infty).$$

5.1. Asíntotas en funciones racionales

Un caso particularmente frecuente se da con las <u>funciones racionales</u>: $f(x) = \frac{P(x)}{Q(x)}$.

Estas funciones:

- pueden tener asíntotas verticales en las raíces del denominador: en las soluciones de Q(x) = 0; y siempre que el límite en ese punto se haga infinito.
- tienen asíntotas horizontales si el grado de P(x) es menor o igual que el grado de Q(x).
- tienen una asíntota oblicua siempre que el grado de P(x) = 1 + grado Q(x).

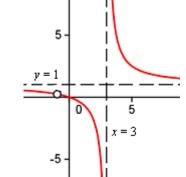
Ejemplos:

a) La función $f(x) = \frac{x^2 + x}{x^2 - 2x - 3}$, que no está definida en los puntos x = 3 y x = -1, tiene una asíntota vertical en x = 3, pero no en x = -1.

En efecto:

$$\lim_{x \to 3} \frac{x^2 + x}{x^2 - 2x - 3} = \left[\frac{12}{0}\right] = \infty \implies x = 3 \text{ es A.V.}$$

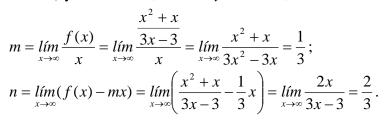
$$\lim_{x \to -1} \frac{x^2 + x}{x^2 - 2x - 3} = \left[\frac{0}{0}\right] = \lim_{x \to -1} \frac{x(x+1)}{(x+1)(x-3)} = \lim_{x \to -1} \frac{x}{x-3} = \frac{1}{4} \implies \text{En } x = -1 \text{ no haya asíntota vertical.}$$



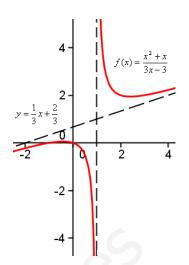
También tiene una asíntota horizontal, la recta y = 1, pues

$$\lim_{x \to \infty} \frac{x^2 + x}{x^2 - 2x - 3} = 1.$$

b) La función $f(x) = \frac{x^2 + x}{3x - 3}$ tiene dos asíntotas, una vertical (la recta x = 1) y otra oblicua, la recta y = mx + n, siendo:



La asíntota es la recta $y = \frac{1}{2}x + \frac{2}{2}$.



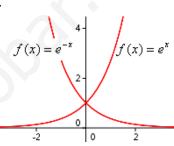
5.2. Asíntotas en funciones exponenciales y logarítmicas

• Las funciones exponenciales suelen tener asíntotas horizontales.

En concreto, $f(x) = e^x$ tiene una asíntota horizontal hacia $-\infty$, pues $\lim_{x \to -\infty} e^x = e^{-\infty} = 0$. La asíntota es el eje OX.

Igualmente, $f(x) = e^{-x}$ tiene una asíntota horizontal hacia $+\infty$, pues $\lim_{x \to +\infty} e^{-x} = e^{-\infty} = 0$.

Sus gráficas son las adjuntas.

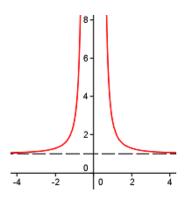


Otros casos no son tan inmediatos, pero para determinar sus asíntotas suele dar resultado estudiar el comportamiento del exponente.

Ejemplo:

La función $f(x) = e^{\frac{1}{x^2}}$, que no está definida en x = 0 tiene una asíntota vertical en ese punto, pues $\lim_{x \to 0} e^{\frac{1}{x^2}} = e^{\frac{1}{0^+}} = e^{+\infty} = +\infty$. También tiene una asíntota horizontal hacia ambos lados del ∞, pues $\lim_{x \to +\infty} e^{\frac{1}{x^2}} = e^{\frac{1}{+\infty}} = e^0 = 1$.

La asíntota es la recta y = 1.

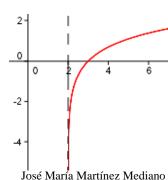


• Las funciones logarítmicas suelen tener asíntotas verticales. En concreto, $f(x) = \ln x$, que sólo está definida para valores de x > 0, tiene a la recta x = 0, como asíntota vertical, pues $\lim \ln x = -\infty$. (Su gráfica se hizo anteriormente).

Otros casos no son tan inmediatos, pero para determinar sus asíntotas suele dar resultado estudiar los puntos en los que la función dada se anula.

Ejemplos:

La función $f(x) = \ln(x-2)$, que está definida sólo para valores de x > 2, tiene a la recta x = 2 como asíntota vertical, pues $lim \ln(x-2) = -\infty$.



6. Continuidad de una función en un punto

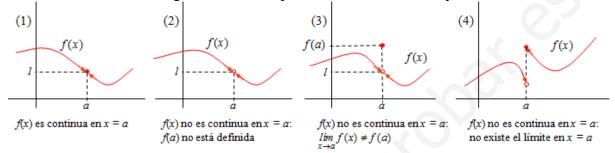
Una función es continua en un punto cuando el límite de la función en dicho punto es igual al valor de la función en él.

La definición es la siguiente: f(x) es continua en el punto $x = a \iff \lim_{x \to a} f(x) = f(a)$

Esto implica que:

- 1) La función f(x) está definida en el punto x = a. Esto es, se sabe cuánto vale f(a).
- 2) Existe el límite en x = a: existe $\lim_{x \to a} f(x) = l$.
- 3) El valor del límite coincide con f(a). Esto es, $\lim_{x\to a} f(x) = l = f(a)$.

De las cuatro funciones siguientes, sólo la primera es continua en el punto x = a.



6.1. Discontinuidad evitable

Cuando una función no es continua de dice que es discontinua. La causa más común de la discontinuidad está en que la función no esté definida en un punto. Así, por ejemplo, la

función
$$f(x) = \frac{x}{(x+2)(x-1)}$$
 es discontinua en $x = -2$ y en $x = 1$.

Hay casos en los que la discontinuidad es evitable. Así sucede para las funciones dadas en las gráficas (2) y (3) de más arriba.

• Una función f(x) tiene una <u>discontinuidad evitable</u> en el punto x = a cuando tiene límite en ese punto.

En el caso (2) la discontinuidad se evita definiendo f(a) = l.

En el caso (3) la discontinuidad de evita (imponiendo) redefiniendo $f(a) = \lim_{x \to a} f(x)$.

En el caso (4) la discontinuidad no puede evitarse, pues la gráfica da un salto en el punto x = a. (Se llama discontinuidad de salto finito).

Ejemplo:

La función $f(x) = \frac{x-1}{x^2-1}$ es discontinua en x = -1 y en x = 1, pues

en esos dos puntos no está definida.

Si se hace el límite en esos puntos, se tiene:

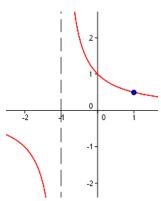
$$\lim_{x \to -1} \frac{x-1}{x^2 - 1} = \left(\frac{-2}{0}\right) = \infty;$$

$$\lim_{x \to 1} \frac{x-1}{x^2 - 1} = \left[\frac{0}{0}\right] = \lim_{x \to 1} \frac{x-1}{(x-1)(x+1)} = \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}.$$

En el primer caso, en x = -1, no existe límite; por tanto, la

discontinuidad no puede evitarse. (Esta discontinuidad se llama de salto infinito).

En cambio, en x = 1 sí puede evitarse. Se evita definiendo aparte $f(1) = \frac{1}{2}$.



6.2. Continuidad lateral

La función representada en la grafica (4) puede considerarse continua por la derecha del punto x = a. En cambio, no es continua a su izquierda.

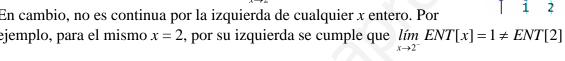
Una función f(x) es <u>continua por la derecha</u> en el punto x = a (en a^+) si está definida (se sabe el valor de f(a)) y el límite coincide con ese valor. Esto es, cuando lím f(x) = f(a)

Una función f(x) es continua por la izquierda en el punto x = a (en a^-) si está definida (se sabe el valor de f(a)) y el límite coincide con ese valor. Esto es, cuando lím f(x) = f(a)

Ejemplos:

- a) La función $f(x) = \frac{x}{x+2}$ no es continua en x = -2, pues en ese punto no está definida. En consecuencia, tampoco es continua por ninguno de los lados del punto x = -2.
- b) La función f(x) = ENT[x] es discontinua para todo $x \in \mathbb{Z}$, pues la función no tiene límite para ningún valor entero de x. No obstante, la función es continua por la derecha de todo x. Por ejemplo, por la derecha de x = 2, se cumple que lim ENT[x] = 2 = ENT[2].

En cambio, no es continua por la izquierda de cualquier x entero. Por ejemplo, para el mismo x = 2, por su izquierda se cumple que $lim ENT[x] = 1 \neq ENT[2]$



6.3. Propiedades de las funciones continuas

Aunque sea de manera escueta conviene indicar algunas propiedades relacionadas con las operaciones de las funciones. Estas propiedades son:

Si f(x) y g(x) con continuas en x = a, entonces:

- $f(x) \pm g(x)$ es continua en x = a.
- $f(x) \cdot g(x)$ es continua en x = a.
- ¹/_{f(x)} es continua en x = a si f(a) ≠ 0.

 ^{f(x)}/_{g(x)} es continua en a cuando g(a) ≠ 0.

Las propiedades anteriores permiten concluir que la mayoría de las funciones usuales son continuas en todos los puntos de su dominio. Así, sin ser exhaustivo puede afirmarse que:

1) <u>Las funciones polinómicas</u>, $f(x) = a_0 + a_1 x + ... + a_n x^n$, son continuas siempre, para todo número real x.

Eiemplos:

Son funciones continuas:

- a) $f(x) = 2 \rightarrow$ Las funciones constantes se representan mediante una recta horizontal.
- b) $f(x) = 2 x \rightarrow \text{La función polinómica de primer grado es una recta.}$
- c) $f(x) = 2 + 3x x^2$ \rightarrow La función polinómica de segundo grado es una parábola.
- d) $f(x) = x^5 2x \rightarrow \text{Todos los polinomios, de cualquier grado son funciones continuas.}$

2) <u>Las funciones racionales</u>, $f(x) = \frac{a_0 + a_1x + ... + a_nx^n}{b_0 + b_1x + ... + b_mx^m}$, son continuas en todos los puntos de su dominio; esto es, siempre que $b_0 + b_1x + ... + b_mx^m \neq 0$.

Ejemplos:

- a) La función $f(x) = \frac{3x-1}{x^2+2}$ es continua siempre, para todo número real, pues su denominador siempre es distinto de 0.
- b) La función $f(x) = \frac{x^2 + 3x 1}{(x 1)(x 2)(x + 3)}$ es continua para todo número real distinto de 1, 2, y -3. Para esos tres valores se anula el denominador.
- 3) <u>Las funciones con radicales, trigonométricas, logarítmicas y exponenciales</u> son continuas en todos los puntos de su dominio.

Ejemplos:

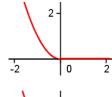
- a) La función $f(x) = \sqrt{x^2 4}$ es continua para todo $x \ge 2$; y para todo $x \le -2$. En el primer caso por la derecha; en el segundo, por la izquierda. No está definida en el intervalo (-2, 2). (El lector interesado podrá comprobar que esta función determina la hipérbola $x^2 y^2 = 4$).
- b) La función $f(x) = \sqrt{4 x^2}$ es continua sólo en el intervalo [-2, 2], que es su dominio de definición. . Esta función determina la circunferencia $x^2 + y^2 = 4$.

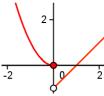
2],

- c) Las funciones seno y coseno son continua siempre. La función
- $f(x) = \frac{x+2}{1-\cos x}$, por ejemplo, no es continua en los puntos en los que no está definida, que son $x = \frac{\pi}{2} + k\pi$.
- d) La función $f(x) = \log(x^2 1)$, que está definida siempre que $x \notin [-1, 1]$, es continua para todo $x \in (-\infty, -1) \cup (1, +\infty)$.
- e) La función $f(x) = (x-3)e^{2x+1}$ es continua en todo **R**. En cambio, $f(x) = e^{\frac{1}{x+2}}$ no es continua en x = -2, ya que no está definida en ese punto.
- 4) Las funciones definidas a trozos serán continuas si cada función lo es en su intervalo de definición, y si lo son en los puntos de unión de los intervalos; para esto último es necesario que coincidan los límites laterales.

Ejemplo:

- a) La función $f(x) = \begin{cases} x^2, & \text{si } x \le 0 \\ 0 & \text{si } x > 0 \end{cases}$ es continua en todo **R**.
- b) La función $f(x) = \begin{cases} x^2, & \text{si } x \le 0 \\ x 1 & \text{si } x > 0 \end{cases}$ es discontinua en x = 0.





7. Continuidad de una función en un intervalo y teoremas relacionados

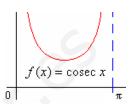
El concepto de continuidad en un punto puede extenderse a un intervalo finito o infinito, abierto o cerrado. Esto permitirá aplicar algunos teoremas importantes propios de las funciones continuas.

<u>Definición</u>: Una función f es continua en un intervalo abierto (a, b) cuando es continua para todo punto $c \in (a, b)$.

Ejemplo:

La función $f(x) = \csc x = \frac{1}{\sec x}$ es continua en el intervalo $(0, \pi)$.

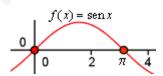
<u>Observación</u>: La función cosec x es discontinua en todos los puntos que anulan a sen x; esto es, en $x = k\pi$, $k \in \mathbb{Z}$.



<u>Definición</u>: Una función f es continua en un intervalo cerrado [a, b] cuando es continua para todo punto $c \in (a, b)$ y además es continua en a por la derecha y en b por la izquierda.

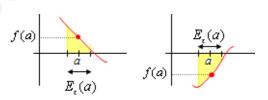
Ejemplo:

La función $f(x) = \operatorname{sen} x$ es continua en el intervalo $[0, \pi]$. Observación: La función sen x es continua en todo \mathbf{R} .



7.1. Proposición inicial

Si f(x) es continua en a y $f(a) \neq 0$, entonces existe un entorno del punto a, $E_{\varepsilon}(a)$, en el que la función conserva el signo. Esto es, si f(a) > 0, la función es positiva para todos los puntos de ese entorno; y si f(a) < 0, la función es negativa en ese entorno.



• La demostración de esta proposición es muy sencilla, pues, si f(x) es continua en a, se cumple que $\lim_{x\to a} f(x) = f(a) \Leftrightarrow \forall \ \epsilon > 0, \exists \ \delta > 0 \ | \ \forall \ x, 0 < |x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon$. Pero $|f(x)-f(a)| < \epsilon \Leftrightarrow f(a)-\epsilon < f(x) < f(a)+\epsilon$.

Por tanto, si f(a) > 0 bastaría con tomar $\varepsilon < f(a)$ para asegurar que f(x) > 0 siempre que $x \in E_{\varepsilon}(a)$. (Y los mismo cuando f(a) < 0).

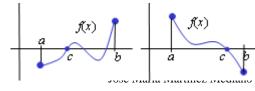
7.2. Teorema de Bolzano (Checo, 1781/1848)

Asegura que si una función continua en un intervalo cerrado toma signos distintos en sus extremos, entonces corta al eje en algún punto de ese intervalo.

<u>Teorema</u>: Si f(x) es una función continua en el intervalo cerrado [a, b] y toma valores de distinto signo en sus extremos (f(a) < 0 < f(b)) o f(a) > 0 > f(b), entonces existe algún punto $c \in (a, b)$ tal que f(c) = 0.

Esto es, si la función es negativa en a (f(a) < 0) y positiva en b (f(b) > 0), entonces se anula en algún punto c entre a y b (f(c) = 0). Geométricamente, esto significa que si

f(a) < 0 y f(b) > 0, entonces la gráfica de f(x) corta al eje OX en un punto, al menos.



Desde el punto de vista algebraico, este teorema asegura que si f(a) < 0 y f(b) > 0, entonces la ecuación f(x) = 0 tiene una solución entre a y b. Esa solución será el punto c cuya existencia afirma el teorema.

Ejemplos:

- a) La función $f(x) = x^3 3x 1$ es continua en todo **R**, y en particular en el intervalo [1, 2]. Como f(1) = 1 3 1 = -3 < 0 y f(2) = 8 6 1 = 1 > 0, puede asegurase que ésa función toma el valor 0 para algún número comprendido entre 1 y 2. Esto es, existe un número c, mayor que 1 y menor que 2, tal que f(c) = 0. Ese número c será una solución de la ecuación $x^3 3x 1 = 0$, pues cumple que $c^3 3c 1 = 0$. (Otra cosa es encontrar el valor exacto de esa solución, ya que salvo en casos concretos no podrá obtenerse; aunque, como se verá en las aplicaciones de estos teoremas siempre se puede hallar una buena aproximación).
- b) La función $f(x) = x \cos x$ corta al eje OX en el intervalo [0, 1] pues:
- 1) es continua en todo **R**, y en particular en el intervalo dado;
- 2) $f(0) = 0 \cos 0 = -1 < 0$ y $f(1) = 1 \cos 1 > 0$, pues $\cos 1 < 1$.

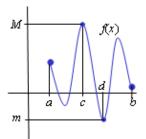
Luego, la función verifica las hipótesis del teorema de Bolzano y, por tanto, existe un punto $c \in (0, 1)$ tal que f(c) = 0. En ese punto la función $f(x) = x - \cos x$ corta al eje OX.

7.3. Teorema de Weierstrass (Alemán, 1815/1897)

Asegura que toda función continua en un cerrado tiene un máximo y un mínimo (absolutos) en ese intervalo.

<u>Teorema</u>: Si f(x) es una función continua en el intervalo cerrado [a, b], entonces existe un punto $c \in [a, b]$ tal que $f(c) = M \ge f(x)$, para todo x perteneciente a [a, b].

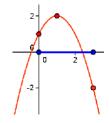
El significado geométrico de este teorema es que la gráfica de f alcanza el máximo en x = c y ese máximo vale M. Análogamente, existe un punto $d \in [a, b]$ tal que $f(d) = m \le f(x)$ para todo $x \in [a, b]$; que equivale a decir en x = d la función toma



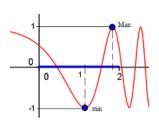
Ejemplos:

el valor mínimo.

a) La función $f(x) = -x^2 + 2x + 1$ es continua en el intervalo [0, 3] (y en todo **R**). Por tanto, existe un punto de ese intervalo en el cual $f(x) = -x^2 + 2x + 1$ alcanza su valor máximo; y otro punto en el que toma el valor mínimo. En este caso, al tratarse de una parábola es fácil encontrar esos puntos. El máximo lo toma en x = 1, y vale 2; el mínimo, en x = 3 y vale -2.



b) La función $f(x) = \cos(e^x)$ es continua en el intervalo [-1, 2]. Por tanto, existe un punto de ese intervalo en el cual esa función alcanza su valor máximo. En este caso resulta más difícil encontrar dicho valor. No obstante, se sabe que si $e^x = 2k\pi$, con $k \in \mathbb{Z}$, la función vale 1: el máximo para el coseno; y cuando $e^x = (2k+1)\pi$, la función vale -1, el mínimo para el coseno.



En el primer caso, para k=1 se tiene: $e^x=2\pi \Rightarrow x\approx 1,84 \rightarrow \text{máximo}$. En el segundo caso, para k=0: $e^x=\pi \Rightarrow x\approx 1,14 \rightarrow \text{mínimo}$.

7.4. Teorema de los valores intermedios (Darboux) (Francés, 1842/1917)

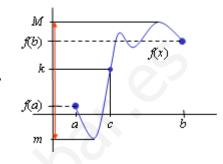
Asegura que una función continua en un intervalo cerrado [a, b] toma todos los valores entre f(a) y f(b). Dice lo siguiente:

Si f(x) es una función continua en [a, b] y $f(a) \neq f(b)$, entonces la función toma cada valor comprendido entre f(a) y f(b).

Esto es, para cualquier número k comprendido entre f(a) y f(b), f(a) < k < f(b), existe un $c \in [a, b]$, tal que f(c) = k.

La demostración de esta consecuencia es fácil. Basta con definir otra función g(x) = f(x) - k y aplicarle el teorema de Bolzano.

En efecto: La función g(x) = f(x) - k es continua en [a, b], por ser diferencia de dos funciones continuas en [a, b]. Además, g(a) > 0 y g(b) < 0, pues g(a) = k - f(a) > 0 y g(b) = k - f(b) < 0.



Luego, g(x) cumple las hipótesis del teorema de Bolzano.

En consecuencia, existe algún punto $c \in (a, b)$ tal que g(c) = 0. Pero esto significa que $g(c) = k - f(c) = 0 \Rightarrow f(c) = k$.

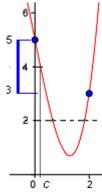
<u>Observación</u>. Este resultado puede ampliarse un poco más, afirmando que "Si f(x) es una función continua en [a, b], entonces la función toma cada valor comprendido entre el mínimo y el máximo de f(x) en ese intervalo". Esto es, para cualquier número k comprendido entre m y M, m < k < M, existe un $c \in [a, b]$, tal que f(c) = k.

Ejemplos:

a) La función $f(x) = \sqrt{x+1}$, es continua en el intervalo [0, 3]. En sus extremos toma los valores f(0) = 1 y f(3) = 2. Por tanto, la función toma todos los valores entre 1 y 2; por ejemplo, el valor 1,83. (Ese valor lo toma en la solución de la ecuación 1,83 = $\sqrt{x+1}$, que es $x = 1,83^2 - 1 = 2,3489$. Es evidente que 2,3489 \in [0, 3]).

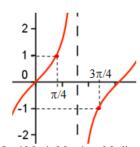
b) Dada la función $f(x) = x^3 - 5x + 5$. ¿Puede afirmarse que esa función toma el valor 4 en algún punto del intervalo [0, 2]? ¿Y el valor 2? Como la función es continua y en los extremos del intervalo toma los valores f(0) = 5 y f(2) = 3, se deduce que toma todos los valores entre 3 y 5; en particular, el valor 4. Esto es, existirá algún punto $c \in (0, 2)$ tal que f(2) = 4. (Véase la figura adjunta).

Como 2 no está entre 3 y 5, no puede afirmarse que la función tome ese valor para algún punto del intervalo (0, 2); pero tampoco puede afirmarse que no lo tome. (De hecho hay dos valores que toman el valor 2).



c) ¿Podría asegurarse que la función $f(x) = \tan x$ toma el valor 0 en el intervalo $[\pi/4, 3\pi/4]$?

Esta función cumple que $f(\pi/4) = 1$ y $f(3\pi/4) = -1$; y el valor 0 está entre -1 y 1. Sin embargo, como la función no es continua en el intervalo dado, no puede asegurase que tome el valor 0.



José María Martínez Mediano

Problemas Propuestos

Definición de límites

- 1. Demuestra, aplicando la definición, que $\lim_{x\to 3} (2x-4) = 2$.
- 2. Demuestra, aplicando la definición, que $\lim_{x \to 0} \frac{2x-1}{x+8} = 2$.

Cálculo de límites por métodos algebraicos

3. Resuelve los siguientes límites:

Resuelve los siguientes límites:
a)
$$\lim_{x \to -2} \frac{x^3 + x^2 - 8x - 12}{x^4 + 4x^3 + 5x^2 + 4x + 4}$$
 b) $\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$ c) $\lim_{x \to 0} \frac{3x^4 - x^3 - x^2}{x^3 - 4x^2 + 5x}$

c)
$$\lim_{x\to 0} \frac{3x^4 - x^3 - x^2}{x^3 - 4x^2 + 5x}$$

4. Halla, en función de los valores de *p*, los siguientes límites:

a)
$$\lim_{x \to 2} \frac{x^2 - px}{x^2 - 3x + 2}$$
 b) $\lim_{x \to 2} \frac{x^3 - 8}{x^2 - p}$

b)
$$\lim_{x\to 2} \frac{x^3 - 8}{x^2 - p}$$

5. Calcula los siguientes límites:

a)
$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x}$$

b)
$$\lim_{x \to 0} \frac{4x}{\sqrt{4+x} - \sqrt{4-x}}$$

a)
$$\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x}$$
 b) $\lim_{x \to 0} \frac{4x}{\sqrt{4+x}-\sqrt{4-x}}$ c) $\lim_{x \to \infty} \frac{\sqrt{x^2-2x}-(x-2)}{x-2}$

6. Calcula:

a)
$$\lim_{x \to +\infty} \frac{2x^2 + 10x}{x^3 - 3x + 4}$$
 b) $\lim_{x \to +\infty} \frac{3x^2 - 4}{2x - 5x^2}$ c) $\lim_{x \to +\infty} \frac{x^3 - 2}{x^2 + 12x}$

b)
$$\lim_{x \to +\infty} \frac{3x^2 - 4}{2x - 5x^2}$$

c)
$$\lim_{x \to +\infty} \frac{x^3 - 2}{x^2 + 12x}$$

7. Calcula el valor de los siguientes límites:

a)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 5x + 1}}{\sqrt{4x^2 + 3x}}$$
 b) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 2x}}{2x - 1}$ c) $\lim_{x \to \infty} \frac{3x^2 + 5x}{\sqrt{x^3 + 5x - 3}}$

b)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 2x}}{2x - 1}$$

c)
$$\lim_{x \to \infty} \frac{3x^2 + 5x}{\sqrt{x^3 + 5x - 3}}$$

8. A partir de la definición del número e, $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$, utilizando las propiedades de los límites, demuestra que.

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{px} = e^{p}$$

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{px} = e^p$$
 b) $\lim_{x \to +\infty} \left(1 + \frac{1}{px} \right)^{px} = e, p \neq 0$ c) $\lim_{x \to +\infty} \left(1 + \frac{p}{x} \right)^x = e^p$

c)
$$\lim_{x \to +\infty} \left(1 + \frac{p}{x} \right)^x = e^p$$

9. Aplicando los resultados anteriores calcula:

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{\frac{x}{2}}$$

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{\frac{x}{2}}$$
 b) $\lim_{x \to +\infty} \left(1 + \frac{1}{2x}\right)^x$ c) $\lim_{x \to +\infty} \left(1 - \frac{4}{x}\right)^x$

c)
$$\lim_{x \to +\infty} \left(1 - \frac{4}{x}\right)^x$$

10. Teniendo en cuenta que, $\lim_{A(x)\to +\infty} \left(1 + \frac{1}{A(x)}\right)^{A(x)} = e$ y la propiedad: "Si f(x) > 0,

 $\lim_{x \to a} \left(f(x)^{g(x)} \right) = \left(\lim_{x \to a} f(x) \right) \left(\lim_{x \to a} g(x) \right), \text{ demuestra que si se cumple que } \lim_{x \to \infty} \left(f(x) \right) = 1 \text{ y}$ $\lim_{x\to\infty} (g(x)) = \infty$, entonces, la indeterminación $\lim_{x\to\infty} (f(x)^{g(x)}) = [1^{\infty}]$, puede resolverse

aplicando la transformación: $\lim_{x \to \infty} (f(x)^{g(x)}) = [1^{\infty}] = e^{\left(\lim_{x \to \infty} (f(x)-1) \cdot g(x)\right)}$

11. Aplicando la transformación anterior, halla el valor de los siguientes límites:

a)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x - 3} \right)^{2x - 3}$$

b)
$$\lim_{x\to\infty} \left(\frac{x+2}{x+1}\right)^{2x-1}$$

a)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x - 3} \right)^{2x - 1}$$
 b) $\lim_{x \to \infty} \left(\frac{x + 2}{x + 1} \right)^{2x - 1}$ c) $\lim_{x \to \infty} \left(\frac{x^2 - 3x}{x^2 + 5x - 1} \right)^{\frac{x - 1}{2}}$

12. Halla el valor de *a* para que $\lim_{x \to \infty} \left(\frac{3x^2 + x}{3x^2} \right)^{ax+2} = 2$

13. Calcula:

a)
$$\lim_{x \to \infty} \log \left(\frac{x^2 + 3x}{x + 2} \right)$$

b)
$$\lim_{x \to 2} \log \left(\frac{x^2 + 3x}{x + 2} \right)$$

a)
$$\lim_{x \to \infty} \log \left(\frac{x^2 + 3x}{x + 2} \right)$$
 b) $\lim_{x \to 2} \log \left(\frac{x^2 + 3x}{x + 2} \right)$ c) $\lim_{x \to +\infty} \log \left(\frac{x + 2}{x^2 + 2} \right)$ d) $\lim_{x \to +\infty} \ln \left(e^{\frac{3x}{x + 2}} \right)$

d)
$$\lim_{x \to +\infty} \ln \left(e^{\frac{3x}{x+2}} \right)$$

14. Calcula:

a)
$$\lim_{x\to\infty} \sin\left(\frac{2}{x+1}\right)$$

a)
$$\lim_{x \to \infty} \sin\left(\frac{2}{x+1}\right)$$
 b) $\lim_{x \to 1} \cos\left(\frac{\pi}{x+1}\right)$ c) $\lim_{x \to 1} \tan\left(\frac{\pi}{x+1}\right)$

c)
$$\lim_{x\to 1} \tan\left(\frac{\pi}{x+1}\right)$$

15. Calcula:

a)
$$\lim_{x \to \infty} \left(\frac{x}{\sin x} \right)$$

a)
$$\lim_{x \to \infty} \left(\frac{x}{\sin x} \right)$$
 b) $\lim_{x \to \infty} \left(\frac{\sin x + 3}{x - 2} \right)$ c) $\lim_{x \to \pi/4} \left(\frac{x}{\tan x} \right)$ d) $\lim_{x \to \infty} \left(\frac{x}{\tan x} \right)$

c)
$$\lim_{x \to \pi/4} \left(\frac{x}{\tan x} \right)$$

d)
$$\lim_{x \to \infty} \left(\frac{x}{\tan x} \right)$$

16. Halla el valor de los siguientes límites:

a)
$$\lim_{x\to 2} 3^{1/(x-2)}$$

a)
$$\lim_{x\to 2} 3^{1/(x-2)}$$
 b) $\lim_{x\to +\infty} 3^{x/(x+2)}$

c)
$$\lim_{x\to\infty} \left(\frac{3^x - 9}{3^{x+1}} \right)$$

17. Halla el valor de los siguientes límites:

a)
$$\lim_{x \to 1} \left(\frac{3x - 1}{x^2 + 1} \right)^{\frac{-3x + 1}{x}}$$

a)
$$\lim_{x \to 1} \left(\frac{3x-1}{x^2+1} \right)^{\frac{-3x+2}{x}}$$
 b) $\lim_{x \to 1} \left(\frac{3x-1}{x+2} \right)^{\frac{-3x+2}{x-1}}$

18. Calcula los siguientes límites:

a)
$$\lim_{x \to 2} \left(\frac{x}{x-2} - \frac{x-1}{(x-2)^2} \right)$$

a)
$$\lim_{x \to 2} \left(\frac{x}{x-2} - \frac{x-1}{(x-2)^2} \right)$$
 b) $\lim_{x \to 3} \left(\frac{2x-3}{x-3} - \frac{x^2+5x-6}{x^2-9} \right)$ c) $\lim_{x \to \infty} \left(\frac{x^2-1}{x-3} - \frac{x^3+3}{x^2} \right)$

c)
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x - 3} - \frac{x^3 + 3}{x^2} \right)$$

19. Calcula los límites:

a)
$$\lim_{x\to\infty} \left(\sqrt{x+2\sqrt{x}} - \sqrt{x} \right)$$

a)
$$\lim_{x \to \infty} \left(\sqrt{x + 2\sqrt{x}} - \sqrt{x} \right)$$
 b) $\lim_{x \to \infty} \left(\sqrt{x^2 + 2x} - \sqrt{x^2 - 3x} \right)$ c) $\lim_{x \to \infty} \left(\sqrt{x^2 - 5x + 4} - x \right)$

c)
$$\lim_{x\to\infty} \left(\sqrt{x^2 - 5x + 4} - x \right)$$

Asíntotas de una función

- **20**. Halla las asíntotas de la función $f(x) = \frac{2x^2 + x}{x 1}$. Indica la posición de la curva respecto de sus asíntotas.
- 21. Dada la función $f(x) = \frac{2}{x^2 5x + 6}$, halla con detalle sus asíntotas; e indica la posición de la curva respecto a ellas.
- 23. Halla las asíntotas de la función $f(x) = \frac{(x+1)^2}{x}$.
- **24.** Sea $f(x) = \frac{4-2x^2}{x}$. Halla su dominio y sus asíntotas.
- **25.** ¿Existe algún valor de p para el que la función $f(x) = \frac{x^2 p^2}{x^2 + 3x + 2}$ tenga solamente una asíntota vertical?
- **26**. Comprueba que la función $f(x) = 2x + \sin x$ no tiene asíntotas.
- 27. Halla las asíntotas de las siguientes funciones:

a)
$$f(x) = e^{-x^2}$$

b)
$$f(x) = e^{\frac{1}{x-1}}$$

$$c) f(x) = e^{x^2}$$

a)
$$f(x) = e^{-x^2}$$
 b) $f(x) = e^{\frac{1}{x-1}}$ c) $f(x) = e^{x^2}$ d) $f(x) = \frac{2}{1 + e^{-x}}$

28. Halla las asíntotas de las siguientes funciones:

a)
$$f(x) = \log(x - 3)$$

b)
$$f(x) = \log \frac{1}{x}$$

a)
$$f(x) = \log(x-3)$$
 b) $f(x) = \log\frac{1}{x}$ c) $f(x) = \log(x^2-4)$ d) $f(x) = \frac{1}{\log x}$

$$d) f(x) = \frac{1}{\log x}$$

Continuidad

29. Indica los puntos de discontinuidad de cada una de las siguientes funciones. Justifica la respuesta en cada caso.

a)
$$f(x) = x^3 + 8$$

a)
$$f(x) = x^3 + 8$$
 b) $f(x) = \frac{x}{x^3 + 8}$ c) $f(x) = \frac{x}{x^2 - 8}$ d) $f(x) = \frac{x}{x^2 + 8}$

c)
$$f(x) = \frac{x}{x^2 - 8}$$

d)
$$f(x) = \frac{x}{x^2 + 8}$$

$$e) f(x) = \sqrt{x^3 - 8}$$

f)
$$f(x) = \sqrt{x^2 + 4}$$

$$g) f(x) = \frac{x}{\sqrt{x^2 + 4}}$$

e)
$$f(x) = \sqrt{x^3 - 8}$$
 f) $f(x) = \sqrt{x^2 + 4}$ g) $f(x) = \frac{x}{\sqrt{x^2 + 4}}$ h) $f(x) = \frac{x}{\sqrt{x^2 - 2x}}$

i)
$$f(x) = e^{x-2}$$

$$j) f(x) = e^{\frac{1}{x}}$$

$$k) f(x) = \log(5x - 6)$$

i)
$$f(x) = e^{x-2}$$
 j) $f(x) = e^{\frac{1}{x}}$ k) $f(x) = \log(5x-6)$ l) $f(x) = \log\frac{1}{x^2+2}$

$$m) f(x) = \tan 2x$$

$$f(x) = \sin \frac{1}{x-1}$$

$$o) f(x) = \cos(2x - 1)$$

m)
$$f(x) = \tan 2x$$
 n) $f(x) = \sin \frac{1}{x-1}$ o) $f(x) = \cos(2x-1)$ p) $f(x) = \frac{2-\sin x}{2+\cos x}$

30. Indica los puntos de discontinuidad de cada una de las siguientes funciones. Justifica la respuesta en cada caso.

a)
$$f(x) = \begin{cases} x^2, & \text{si } x \le 1 \\ x - 1, & \text{si } x > 1 \end{cases}$$
 b) $f(x) = \begin{cases} 1 - x^2, & \text{si } x \le 1 \\ x - 1, & \text{si } x > 1 \end{cases}$ c) $f(x) = \begin{cases} \cos x, & \text{si } x \le 0 \\ x + 1, & \text{si } x > 0 \end{cases}$

a)
$$f(x) =\begin{cases} x^2, & \text{si } x \le 1 \\ x - 1, & \text{si } x > 1 \end{cases}$$
 b) $f(x) =\begin{cases} 1 - x^2, & \text{si } x \le 1 \\ x - 1, & \text{si } x > 1 \end{cases}$ c) $f(x) =\begin{cases} \cos x, & \text{si } x \le 0 \\ x + 1, & \text{si } x > 0 \end{cases}$ d) $f(x) =\begin{cases} \frac{1}{x - 1}, & \text{si } x \le 0 \\ \sin x, & \text{si } x > 0 \end{cases}$ e) $f(x) =\begin{cases} \frac{e^{x - 1}}{x - 2}, & \text{si } x \le 1 \\ \frac{-1}{x - 2}, & \text{si } x > 1 \end{cases}$ f) $f(x) =\begin{cases} 1 - x, & \text{si } x \le 1 \\ \ln(2 - x) & \text{si } x > 1 \end{cases}$

- 31. Estudia la continuidad de función $f(x) = \frac{x^5 x^8}{1 x^6}$. ¿Si tuviese alguna discontinuidad evitable cómo podría evitarse?
- 32. Determina el tipo de discontinuidades que presenta la función $f(x) = \frac{x^2 1}{x^2 + 7x 8}$.
- 33. Dependiendo de los valores de p, ¿tiene la función $f(x) = \frac{2x-2}{x^2-px+1}$ alguna discontinuidad? Si la tuviese, ¿podría evitarse en algún caso?
- **34.** La función $f(x) = \frac{x^2 + kx + 4}{x^2 4}$ es discontinua en los puntos x = -2 y x = 2. Podría evitarse alguna discontinuidad para algún valor de *k*?
- 35. ¿Para qué valores de a es continua en x = 1 la función $f(x) = \begin{cases} x^2, & \text{si } x \le 1 \\ 2x + a, & \text{si } x > 1 \end{cases}$?
- **36.** Determina los valores de a y b que hacen que la función $f(x) = \begin{cases} \sin x a & x < -\pi \\ \cos x + b & -\pi \le x < 0 \\ e^x 1 & x \ge 0 \end{cases}$ sea continua en todo **R**.
- 37. Determina la continuidad de las funciones:

a)
$$f(x) = |x - 1|$$

b)
$$f(x) = |x^2 - 2x|$$

Teorema de Bolzano

- 38. Enuncia el teorema de Bolzano. Aplicando dicho teorema comprueba que la función $f(x) = 2x^3 - 5x^2 + x + 1$ corta al eje OX en el intervalo [-1, 1].
- **39**. Comprueba que la ecuación $e^{-x} + 2x 1 = 0$ tiene una raíz en el intervalo [-2, -1]. Calcula un valor de esa raíz con una aproximación del orden de las centésimas.

- **40**. Comprueba que el polinomio $P(x) = 2x^3 + 3x^2 0.2$ tiene dos raíces negativas y otra positiva. Da una solución aproximada de la raíz positiva
- **41**. Determina los valores que puede toma p para que la función $f(x) = 2x^3 + px^2 3$ corte al eje de abscisas como se indica:
 - a) Una vez en el intervalo [-1, 0].
 - b) Una vez en el intervalo [0, 1].
 - c) Dos veces en el intervalo [-1, 1].
- **42**. Halla el valor de p para que la función $f(x) = x^3 3x^2 + p$ tome con seguridad el valor $\sqrt{2}$ en algún punto del intervalo [1, 2]:
- **43**. ¿Para qué valores del parámetro a puede asegurarse que la función $f(x) = x^3 - ax^2 + x + 1$ corta dos veces al eje OX, en el intervalo [-1, 1]?
- **44**. ¿Puede aplicarse el teorema de Bolzano a la función $f(x) = \frac{1}{\cos x}$ en el intervalo $[0, \pi]$?
- **45**. ¿Puede aplicarse el teorema de Bolzano a la función $f(x) = \sin 2x + \cos 3x$ en el intervalo $[0, \pi]$? Encuentra, si existe, un punto de $[0, \pi]$ en el cual se anule esta función.
- **46**. Aplicando el teorema de Bolzano halla un intervalo en el que las siguientes funciones corten al eje de abscisas:

a)
$$f(x) = -x^3 + 6$$

a)
$$f(x) = -x^3 + 6$$
 b) $g(x) = x^4 - x - 4$ c) $h(x) = e^{x-2} - 3x$

c)
$$h(x) = e^{x-2} - 3x$$

47. ¿Por qué no se puede aplicar el teorema de Bolzano, en el intervalo [-1, 1], a las siguientes funciones?

a)
$$f(x) = \frac{3x-1}{2x+1}$$

$$b) h(x) = \frac{1}{\tan x}$$

c)
$$g(x) = \frac{x}{1 - e^x}$$

a)
$$f(x) = \frac{3x-1}{2x+1}$$
 b) $h(x) = \frac{1}{\tan x}$ c) $g(x) = \frac{x}{1-e^x}$ d) $i(x) = \frac{x-1}{1+2\sin x}$

- **48**. Comprueba que la ecuación $x = x \sin x + \cos x$ tiene alguna solución real en el intervalo $[-\pi,\pi]$.
- **49**. Demuestra que la función $f(x) = e^x + 2\cos x$ corta infinitas veces al eje OX. Da dos intervalos distintos en los que pueda asegurarse que la gráfica de f corta al eje OX.
- **50**. Demuestra que la función $f(x) = e^{-x} \sin x$ corta al eje OX en algún punto del intervalo $(\pi/2, \pi)$.

Soluciones

- **3**. a) 1/5. b) 12. c) 0.
- **4**. a) Si $p \ne 2$ el límite será infinito; si p = 2, vale 2.
- b) Si $p \neq 4$ el límite valdrá 0; si p = 4, vale 3.
- **5**. a) 1/2. b) 8. c) 0.
- **6**. a) 0. b) -3/5. c) ∞ .
- 7. a) 1/2. b) 1/2. c) ∞ .
- **9**. a) $e^{1/2}$. b) $e^{1/2}$. c) e^{-4} .
- **11**. a) e^2 . b) e^2 . c) e^{-4} .
- **12**. $a = 3 \ln 2$.
- **13.** a) ∞ . b) $\log \frac{5}{2}$. c) $-\infty$. d) 3.
- **14**. a) 0. b) 0. c) ∞ .
- **15**. a) $\pm \infty$. b) 0. c) $\pi/4$. d) no existe.
- **16**. a) No existe: 0; $+\infty$. b) 3. c) 1/3.
- **17**. a) 1. b) No existe: $0; +\infty$.
- **18**. a) ∞ . b) 2/3. c) 3.
- **19**. a) 1. b) 5/2. c) –5/2.
- **20**. x = 1; y = 2x + 3.
- **21**. x = 2; x = 3; y = 0.
- **23**. x = 0; y = x + 2.
- **24**. $x \neq 0$. x = 0; y = -2x.
- **25**. $p = \pm 1$; $p = \pm 2$.
- **27**. a) y = 0. b) x = 1; y = 1. c) No tiene. d) y = 0; y = 2.
- **28.** a) x = 3. b) x = 0. c) $x = -2^-$; $x = 2^+$. d) x = 1; y = 0.
- **29**. b) x = -2. c) $\{-\sqrt{8}, \sqrt{8}\}$. e) x < 2. h) [0, 2]. j) 0. k) $x \le 6/5$. m) $x = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$. n) 1.
- **30**. a) x = 1. d) x = 0. e) x = 2. f) $x \ge 2$.
- **31.** Discontinua en x = -1 o x = 1. En x = 1, $f(1) = \frac{1}{2}$.
- 32. Evitable en x = 1, $f(1) = \frac{2}{9}$. No evitable en x = 8.
- 33. Si p > 2 o p < -2, la función tiene dos discontinuidades; si $p = \pm 2$, tiene una discontinuidad. No pueden evitarse.
- **34**. Si k = 4, puede evitarse en x = -2. Si k = -4, puede evitarse en x = 2.
- **35**. a = -1.

- **36**. b = -1; a = 2.
- **37**. Continuas siempre.
- **38**. Corta dos veces al eje OX entre -1 y 1.

39. x = -1,25.

- **40**. x = 0.24.
- **41**. a) p > 5. b) p > 1. c) p > 5. **42**. $2 + \sqrt{2} \le p \le 4 + \sqrt{2}$.

- **43**. *a* > 3.
- 44. No.
- **45**. $x = \pi/2$.
- **46**. a) [0, 2] o [1, 2]. b) [0, 2] o [1, 2]. c) [0, 2] o [2, 5].
- **47**. Ninguna de las funciones es continua en el intervalo [-1, 1].
- **49**. Al menos una vez en cada intervalo $[-(k+1)\pi, -k\pi]$ con k entero positivo.
- **50**. La función se anula en algún entre $\pi/2$ y π . Ese será el punto de corte.