CONCAVIDAD, CONVEXIDAD Y PUNTOS DE INFLEXIÓN

Dada una función y = f(x) y un punto $x_0 \in D$ en el que la función es derivable, se dice que f(x) es:

• Cóncava en x_o , si existe un entorno de x_o en el que la gráfica de f no queda por encima de la recta tangente a f en x_o , es decir, si $f(x) \le f(x_o) + f'(x_o)(x - x_o)$.

Si para $x \neq x_0$ la desigualdad anterior es estricta se dice que f es **estrictamente cóncava** en x_0 .

• Convexa en x_o , si existe un entorno de x_o en el que la gráfica de f no queda por debajo de la recta tangente a f en x_o , es decir, si $f(x) \ge f(x_o) + f'(x_o)(x - x_o)$.

Si para $x \neq x_o$ la desigualdad anterior es estricta se dice que f es **estrictamente convexa** en x_o .

La función f tiene en $x_o \in D$ un punto de inflexión si f es estrictamente cóncava a la izquierda de x_o y estrictamente convexa a su derecha o viceversa.

Si f es derivable en un punto de inflexión x_o , entonces la recta tangente a f en dicho punto atraviesa a la gráfica de f en $(x_o, f(x_o))$.

A continuación, se enuncian tres resultados que caracterizan la concavidad, convexidad y la existencia de puntos de inflexión para funciones derivables.

Proposición 1 (condiciones suficientes de concavidad y convexidad)

Si f es una función con derivada segunda continua en un punto x_{o} , se verifica :

- a) $f''(x_0) > 0 \Rightarrow f$ es estrictamente convexa en x_0
- b) $f''(x_0) < 0 \implies f$ es estrictamente cóncava en x_0

Proposición 2 (condición necesaria de punto de inflexión)

Si f es una función con derivada segunda continua en un punto x_o y f tiene en x_o un punto de inflexión, entonces $f''(x_o) = 0$.

Proposición 3 (condición suficiente de punto de inflexión)

Si f es una función con derivada tercera continua en un punto x_o y $f''(x_o) = 0$, se verifica:

$$f'''(x_o) \neq 0 \Rightarrow x_o$$
 es un punto de inflexión de f

Nota: Entre los candidatos a puntos de inflexión, hay que tener en cuenta no sólo aquellos puntos que anulan f''(x) sino también donde no existe.

Ejemplo 4: Estudiar la concavidad, convexidad y hallar los puntos de inflexión de las siguientes funciones.

a)
$$f(x) = \ln(1 + x^2)$$

Su derivada segunda se ha calculado en el ejemplo 2a) y es $f''(x) = \frac{-2x^2 + 2}{(1+x^2)^2}$.

Para realizar el estudio de su signo se factoriza únicamente el numerador ya que el denominador es siempre positivo quedando $f''(x) = \frac{2(1-x^2)}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2} = \frac{2(1-x)(1+x)}{(1+x^2)^2}$

El signo de esta expresión depende de los signos de (1 - x) y de (1 + x) que cambia en los puntos x = 1 y x = -1 respectivamente, como se observa en la siguiente tabla:

Signo	(-∞, -1)	(-1, 1)	(1, +∞)
1 - <i>x</i>	+	+	-
1 + X	-	+	+
f"(x)	-	+	-
f(x)	\cap	U	\cap

Luego en los intervalos $(-\infty, -1)$ y $(1, +\infty)$ la función es estrictamente cóncava y en (-1, 1) es estrictamente convexa. Además como x = 1 y x = -1 son puntos del dominio de f en los que cambia la concavidad-convexidad de la función, se tiene que son puntos de inflexión.

b)
$$f(x) = \sqrt[3]{2x-1}$$

Calculamos sus derivadas de primer y segundo orden que son $f'(x) = \frac{2}{3\sqrt[3]{(2x-1)^2}}$ y $f''(x) = \frac{-4}{9\sqrt[3]{(2x-1)^5}}$. Como

 $f''(x) \neq 0$ sólo hay que considerar el punto $x = \frac{1}{2}$ del dominio en el que la función no es derivable, y estudiar el signo de f''(x) antes y después de él.

En $\left(-\infty, \frac{1}{2}\right)$ se cumple que f''(x) > 0, luego f es estrictamente convexa y en $\left(\frac{1}{2}, +\infty\right)$ se cumple que f''(x) < 0, luego f es estrictamente cóncava. Por lo tanto, $x = \frac{1}{2}$ es un punto de inflexión de f.

Ejemplo 5: Hallar los puntos de inflexión de la función $f(x) = 3x^4 - 10x^3 - 12x^2 + 12$

Se calcula la derivada de segundo orden que es $f''(x) = 36x^2 - 60x - 24$ y los puntos donde se anula, obteniéndose

$$f''(x) = 0$$
 \iff $36x^2 - 60x - 24 = 0$ \iff $x = 2$ y $x = -\frac{1}{3}$

Para comprobar la condición suficiente de punto de inflexión se halla la derivada tercera quedando f'''(x) = 72x - 60 cuyo valor en los puntos x = 2 y $x = -\frac{1}{3}$ es: $f'''(2) = 72.2 - 60 = 84 \neq 0$ y $f'''\left(-\frac{1}{3}\right) = 72\left(-\frac{1}{3}\right) - 60 = -84 \neq 0$. Por lo tanto, x = 2 y $x = -\frac{1}{3}$ son puntos de inflexión de f.

Las tres proposiciones anteriores se pueden generalizar en el siguiente resultado:

Si f(x) es una función que tiene derivadas continuas hasta orden n en un punto $x_o \in D$ y $f''(x_o) = f'''(x_o) = \dots = f^{(n-1)}(x_o) = 0$, $f^{(n)}(x_o) \neq 0$, entonces:

Si
$$n$$
 es par y
$$\begin{cases} f^{(n)}(x_o) > 0 \Rightarrow f \text{ es estrictamente convexa en } x_o \\ f^{(n)}(x_o) < 0 \Rightarrow f \text{ es estrictamente cóncava en } x_o \end{cases}$$

Si n es impar $\Rightarrow x_o$ es un punto de inflexión de f

Ejemplo 6: Hallar los puntos de inflexión de la función $f(x) = -2x^5 + 7x - 1$

Se calcula la derivada de segundo orden, $f''(x) = -40x^3$ que únicamente se anula en x = 0.

Hallando la derivada tercera queda $f'''(x) = -120x^2$ cuyo valor en el punto x = 0 es f'''(0) = 0. Al ser cero esta derivada se calculan las derivadas siguientes en x = 0 hasta encontrar la primera que no se anule, obteniéndose:

$$f^{(4)}(x) = -240x$$
 cuyo valor en $x = 0$ es $f^{(4)}(0) = 0$
 $f^{(5)}(x) = -240$ cuyo valor en $x = 0$ es $f^{(5)}(0) = -240 \neq 0$

Como la primera derivada no nula en x = 0 es de orden impar, n = 5, se concluye que x = 0 es punto de inflexión de f.