EXAMEN FINAL

1ª EVALUACIÓN:

- 1. Dado $\alpha \in 4^{\circ}$ cuadrante tal que $\cos \alpha = \frac{\sqrt{11}}{6}$, hallar:
 - a) sen 2α mediante identidades trigonométricas (resultados racionalizados; no vale utilizar decimales)
 - **b)** $\cos \alpha/2$
 - **c)** tg (α +135°)
 - **d)** sen (α -3570°)
 - e) Obtener α con la calculadora.
- 2. a) Resolver el triángulo de datos A=40°, b=7m, c=10m b) Hallar su área.
- 3. Una antena de radio es vista por dos observadores separados entre sí 150 m. Ambos observadores y la antena están alineados. Los ángulos que las visuales forman con el suelo son 75º y 55º. Calcular las distancias de cada observador a la antena y la altura de ésta.

4. a) Desarrollar y simplificar al máximo: $\left(\sqrt{3} - \frac{1}{\sqrt{2}}\right)^5$ b) Comprobar el resultado.

2ª EVALUACIÓN:

- **1.** Dados $\vec{u} = (3,1)$, $\vec{v} = (a,-1/2)$ y $\vec{w} = (-3,2)$, se pide:
 - a) Hallar a para que \overrightarrow{v} sea unitario. Comprobar gráficamente el resultado.
 - b) Hallar a para que $\stackrel{\rightarrow}{u}$ y $\stackrel{\rightarrow}{v}$ sean //. Justificar gráficamente la solución obtenida.
 - c) Hallar a para que \vec{v} y \vec{w} sean \bot . Justificar gráficamente la solución obtenida.
 - **d)** Hallar un vector \perp a \vec{u} y unitario.
 - e) Hallar el ángulo que forman \vec{u} y \vec{w}
- 2. Dadas las rectas r: 2x-3y+5=0 y s: y=2x-1
 - a) Hallar la ecuación de la recta r'// a r que pasa por P(-3,2), expresándola en todas las formas conocidas.
 - b) Hallar la ecuación de la recta ⊥ a s que pasa por el origen, en forma general.
 - c) Hallar el ángulo que forman r y s
 - d) Hallar la distancia entre r y r'
- 3. a) Operar en forma binómica: $\frac{1 (2 + 3i)^2 (1 2i)}{2i^{77} i^{726}}$
 - **b)** Operar en polar, y pasar el resultado a binómica: $\frac{\left(2\sqrt{3}-2i\right)^8}{\left(-4\sqrt{2}+4\sqrt{2}i\right)^6}$
- **4.** a) Calcular $\sqrt[3]{\frac{i^6+i^{-6}}{-2i}}$ b) Dibujar las raíces. c) Comprobar, en forma polar, la raíz $\epsilon 3^{er}$ cuadrante.

1. Dada
$$f(x) = \begin{cases} \frac{5}{x-5} & \text{si } x \le 0 \\ \sqrt{x+1} & \text{si } 0 < x \le 3 \\ \frac{10}{x+2} & \text{si } x > 3 \end{cases}$$

a) Representarla gráficamente.

b) Indicar su Dom(f) e Im(f)

c) Intervalos de crecimiento. M y m

d) Estudiar su continuidad

e) Ecuación de las posibles asíntotas.

f) Hallar la antiimagen de y=3/2

g) Hallar analíticamente lim f(x)

2. a) Hallar $\log_5 \frac{25}{\sqrt[5]{125}}$ b) Hallar $\log \sqrt[3]{2,4}$ en función de $\log 2$ y $\log 3$

c) Resolver: $2.9^x - 3^{x+2} + 4 = 0$

3. Calcular: a) $\lim_{x \to -2} \frac{2x^3 + 9x^2 + 12x + 4}{x^3 + 7x^2 + 16x + 12}$ b) $\lim_{x \to -\infty} \frac{2x^3 + 9x^2 + 12x + 4}{x^3 + 7x^2 + 16x + 12}$ c) $\lim_{x \to \infty} \left(\sqrt{4x^2 - 5x} - 2x \right)$

4. a) Hallar la derivada de $f(x)=x^3$ en x=1 aplicando la definición, es decir, mediante un límite.

b) Derivar $y = \frac{2}{(x^2 + x + 1)^3}$ y simplificar. **c)** Ídem: $y = \frac{x^5}{5} - \frac{1}{2x} + \frac{2}{x^2}$ **d)** Ídem: $y = \left(\frac{x^2 - 1}{x^2 + 1}\right)^3$

e) Ídem: $y = -\sqrt[5]{2x^4 + 1} + 2\sqrt{x^2 - 2}$