

3rd TERM GENERAL EXAM

Name:	
rume	

Remember: in each question, write the steps you have taken to reach the solution. (1 point each question)

- 1. Five years ago a woman's age was the square of her son's age. In ten years' time, her age will be twice that of her son's age. Find:
 - a) the age of the son five years ago. b) the present age of the woman.

2. Solve:
$$\frac{2x-4}{x^2-2x} - \frac{5}{3x+6} = \frac{4}{x^2-4}$$

- 3. Solve by substitution and graphically : $\frac{2x-y-1=0}{y=-x^2+x+1}$
- 4. Solve the system of inequalities: $\frac{x+y}{4} \frac{x-y}{2} < 1$ $3x \frac{2y}{3} \le 2$
- 5. Find the height of a rectangular box of length 8 cm and width 6 cm, where the length of a diagonal is 11 cm.
- 6. A ladder 5 m long, leaning against a vertical wall makes an angle of 65° with the ground.
 - a) How high on the wall does the ladder reach?
 - b) How far is the foot of the ladder from the wall?
 - c) What angle does the ladder make with the wall?
- 7. Suppose that $\cos\alpha=-\frac{3}{5}$ and α lies in quadrant II. Find the other trigonometric ratios for α .
- 8. Two girls on the same side of a tower notice the angles of elevation to the top of the tower are 45° and 60° respectively. If the height of the tower is 90 m, find the distance between the two girls.
- 9. A circle is circumscribed about the square ABCD whit vertices A(-1,5), B(-1,2), C(2,2), D(2,5). Write an equation to the circle.
- 10. With point A(2,3) and straight line r: 2x 3y + 4 = 0
- a) Write the equation of a line parallel to r and joining the point A.
- b) Write the equation of a line perpendicular to r and joining the point A.

SOLUTION

1. Five years ago a woman's age was the square of her son's age. In ten years' time, her age will be twice that of her son's age. Find:

	Five years ago	In ten years
Woman	x ²	$x^2 + 15$
Son	×	x + 15

$$x^{2} + 15 = 2(x + 15) \rightarrow x^{2} + 15 = 2x + 30 \rightarrow x^{2} - 2x - 15 = 0$$
$$x = \frac{2 \pm \sqrt{4 + 60}}{2} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

- a) the age of the son five years ago. He was 5 years old
- b) the present age of the woman. $x^2 + 5 = 25+5 = 30$ She is 30 years old

2. Solve:
$$\frac{2x-4}{x^2-2x} - \frac{5}{3x+6} = \frac{4}{x^2-4} \to mcm = 3x(x+2)(x-2)$$
$$\frac{(2x-4)(3x+6)}{3x(x^2-4)} - \frac{5x(x-2)}{3x(x^2-4)} = \frac{4\cdot 3x}{3x(x^2-4)} \to 6x^2 - 24 - 5x^2 + 10x = 12x$$
$$x^2 - 2x - 24 = 0 \to x = \frac{2\pm\sqrt{4+96}}{2} = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$

$$2x - 1 = -x^2 + x + 1 \rightarrow x^2 + x - 2 = 0 \rightarrow x = \frac{-1 \pm \sqrt{1 + 8}}{2} = \begin{pmatrix} x_1 = 1 \rightarrow y_1 = 1 \\ x_2 = -2 \rightarrow y_2 = -5 \end{pmatrix}$$

Graphically:
$$\begin{cases} 2x - y - 1 = 0 \rightarrow y = 2x - 1 \rightarrow \text{line, slope} = 2 \text{ and } y - \text{intercepts} - 1 \\ y = -x^2 + x + 1 \rightarrow \text{parabole} \cap \rightarrow V = -\frac{1}{-2} = \frac{1}{2} \rightarrow V\left(\frac{1}{2}, \frac{5}{4}\right) \end{cases}$$

x- intercepts:
$$y = 0 \rightarrow x = 1 \rightarrow (1,0)$$

y-intercepts:
$$x = 0 \rightarrow -x^2 + x + 1 = 0$$

$$x = \frac{-1 \pm \sqrt{1+4}}{2} = \frac{-1 \pm \sqrt{5}}{2}$$

4. Solve the system of inequalities:

$$\left\{\begin{array}{l} \frac{x+y}{4} - \frac{x-y}{2} < 1 \\ 3x - \frac{2y}{3} \le 2 \end{array}\right\} \rightarrow \begin{array}{l} x+y-2x+2y < 4 \\ 9x-2y \le 6 \end{array}$$

$$\begin{array}{l} -x+3y<4 \\ 9x-2y\leq 6 \end{array} \} \rightarrow \begin{cases} -x+3y=4 \\ 9x-2y=6 \end{array} \rightarrow \begin{cases} y=\frac{x+4}{3} \\ y=\frac{9x-6}{2} \end{cases} \text{, graphing these lines:}$$

$$(0,0) \rightarrow \begin{cases} -0+0 < 4 \text{ Yes} \\ 0-0 \le 6 \text{ Yes} \end{cases}$$

5. Find the height of a rectangular box of length 8 cm and width 6 cm, where the length of a diagonal is $11 \, \text{cm}$.

$$d^2 = 6^2 + 8^2 \to d^2 = 100 \to d = 10$$

$$11^2 = d^2 + h^2 \rightarrow 121 = 100 + h^2 \rightarrow h^2 = 21$$

$$h = \sqrt{21} \text{ cm}$$

a) How high on the wall does the ladder reach?

$$sin 65^o = \frac{h}{5} \rightarrow h = 4.53m$$

b) How far is the foot of the ladder from the wall?

$$\cos 65^{\circ} = \frac{x}{5} \rightarrow x = 2.11 \text{m}$$

c) What angle does the ladder make with the wall? $\alpha = 90^{\circ} - 65^{\circ} = 25^{\circ}$

7. Suppose that $\cos \alpha = -\frac{3}{5}$ and α lies in quadrant II. Find the other

trigonometric ratios for lpha .

In quadrant II, $\sin \alpha > 0$, $\cos \alpha < 0$, $\tan \alpha < 0$

$$\sin^2 \alpha + \cos^2 \alpha = 1 \Rightarrow \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow \sin \alpha = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{4}{5}}{-\frac{3}{5}} = -\frac{4}{3}$$

8. Two girls on the same side of a tower notice the angles of elevation to the top of the tower are 45° and 60° respectively. If the height of the tower is 90 m, find the distance between the two girls.

$$tan 60^{o} = \frac{90}{y} \rightarrow y = \frac{90}{\sqrt{3}} = \frac{90\sqrt{3}}{3} = 30\sqrt{3}m$$

$$tan 45^o = \frac{90}{x} \rightarrow x = \frac{90}{1} = 90m$$

Distance between the two girls:

$$90 - 30\sqrt{3} = 38.04$$
m

10. A circle is circumscribed about the square ABCD whit vertices A(-1,5), B(-1, 2), C(2,2), D(2,5). Write an equation to the circle.

Centre of the circle: Midpoint AC or BD

$$M = \left(\frac{-1+2}{2}, \frac{5+2}{2}\right) = \left(\frac{1}{2}, \frac{7}{2}\right)$$

Radius of de circle: r = d(A, M)

$$d(A,M) = \sqrt{\left(\frac{1}{2} + 1\right)^2 + \left(\frac{7}{2} - 5\right)^2}$$

$$d(A, M) = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{3}{2}\right)^2} = \sqrt{\frac{18}{4}} = \sqrt{\frac{9}{2}}$$

Equation:
$$\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{7}{2}\right)^2 = \frac{9}{2}$$

- 2. With point A(2,3) and straight line r: 2x 3y + 4 = 0
 - a) Write the equation of a line parallel to ${\bf r}$ and joining the point ${\bf A}$.

$$r: 2x - 3y + 4 = 0 \rightarrow y = \frac{2}{3}x + \frac{4}{3} \rightarrow m = \frac{2}{3}$$

Parallel line:
$$y - 3 = \frac{2}{3}(x - 2) \rightarrow y = \frac{2}{3}x + \frac{5}{3}$$

b) Write the equation of a line perpendicular to ${\bf r}$ and joining the point ${\bf A}$.

Perpendicular line:
$$m' = -\frac{3}{2} \rightarrow y - 3 = -\frac{3}{2}(x - 2) \rightarrow y = -\frac{3}{2}x + 6$$