INECUACIONES. SISTEMAS DE INECUACIONES.

INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA

011 <u>0</u> -2+4x-3x+5>x+3+x

RESOLUCIÓN:

4x - 3x - x - x > 2 - 5 + 3

- x > 0

x < 0

x < 0

(- ∞, 0)] - ∞, 0[Representación gráfica

O

R

020 💁

 $\frac{2x-1}{3} - \frac{x-2}{2} - \frac{x+1}{6} \le \frac{x-5}{12}$

RESOLUCIÓN:

m.c.m: 12

 $4(2x-1)-6(x-2)-2(x+1) \le x-5$

 $8x - 4 - 6x + 12 - 2x - 2 \le x - 5$ \rightarrow $8x - 6x - 2x - x \le -5 + 4 - 12 + 2 - x \le -11$

 $x \ge 11$

x ≥ 11

 $[11, +\infty)$ $[11, +\infty[$

Representación gráfica

024 💁

 $\frac{3x-3}{5} - \frac{4x+8}{2} < \frac{x}{4} - x + 1$

RESOLUCIÓN:

m.c.m: 20

13x > - 112

 $x > \frac{-112}{13}$

 $(-112/13, +\infty)$] -112/13, +\infty[

031 💁

 $\frac{x-1}{3} - \frac{x-2}{2} - \frac{x-1}{6} \le \frac{x-5}{12} - 2$

RESOLUCIÓN:

m.c.m: 12

$$4(x-1)-6(x-2)-2(x-1) \le x-5-24 \\ 4x-4-6x+12-2x+2 \le x-5-24 \\ 4x-6x-2x-x \le -5+4-12-2-24 \\ -5x \le -39$$

 $5x \ge 39$

 $x \ge \frac{39}{5}$

 $[39/5, + \infty)$ $[39/5, + \infty[$

035 💁

 $\frac{2(x-1)}{4} - \frac{-1+3x}{3} \ge \frac{3-x}{12} - x + 2$

RESOLUCIÓN:

m.c.m. 12

$$6\cdot(x-1)-4(-1+3x) \ge (3-x)-12x+24$$

 $6x-6+4-12x \ge 3-x-12x+24$
 $6x-12x+x+12x \ge 3+24+6-4$

 $7x \ge 29 \rightarrow x \ge 29/7$

x ≥ 29/7

 $[29/7, + \infty)$ $[29/7, + \infty[$

036 💁

 $\frac{x}{2} - 3(x+1) < 2x + \frac{1}{3}(x+2)$

RESOLUCIÓN:

m.c.m: 6

$$3x - 18(x + 1) < 12x + 2(x + 2)$$

$$3x - 18x - 18 < 12x + 2x + 4$$

$$3x - 18x - 12x - 2x < 4 + 18 \rightarrow -29x < 22$$

$$x > \frac{-22}{29}$$

$$(-22/29, +\infty)$$

 $]-22/29, +\infty[$

RESOLUCIÓN DE SISTEMAS DE INECUACIONES CON 1 INCÓGNITA

Resolver un sistema de inecuaciones es buscar la solución común en todas y cada una de las inecuaciones que constituyen el sistema.

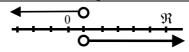
006 💁

$$3x - 2 < x$$

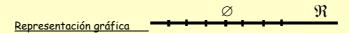
$$6x - 4 > 3 - x$$

RESOLUCIÓN:

$$3x - x < 2 \rightarrow 2x < 2 \rightarrow x < 1$$



No existe ningún valor Real de x que verifique simultáneamente ambas inecuaciones



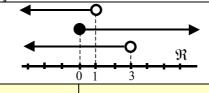
011

$$-x > -1$$

$$x \ge 0$$

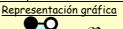
$$2x < 6$$

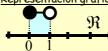
RESOLUCIÓN:



$$0 \le x < 1$$

[0, 1) [0, 1[





012

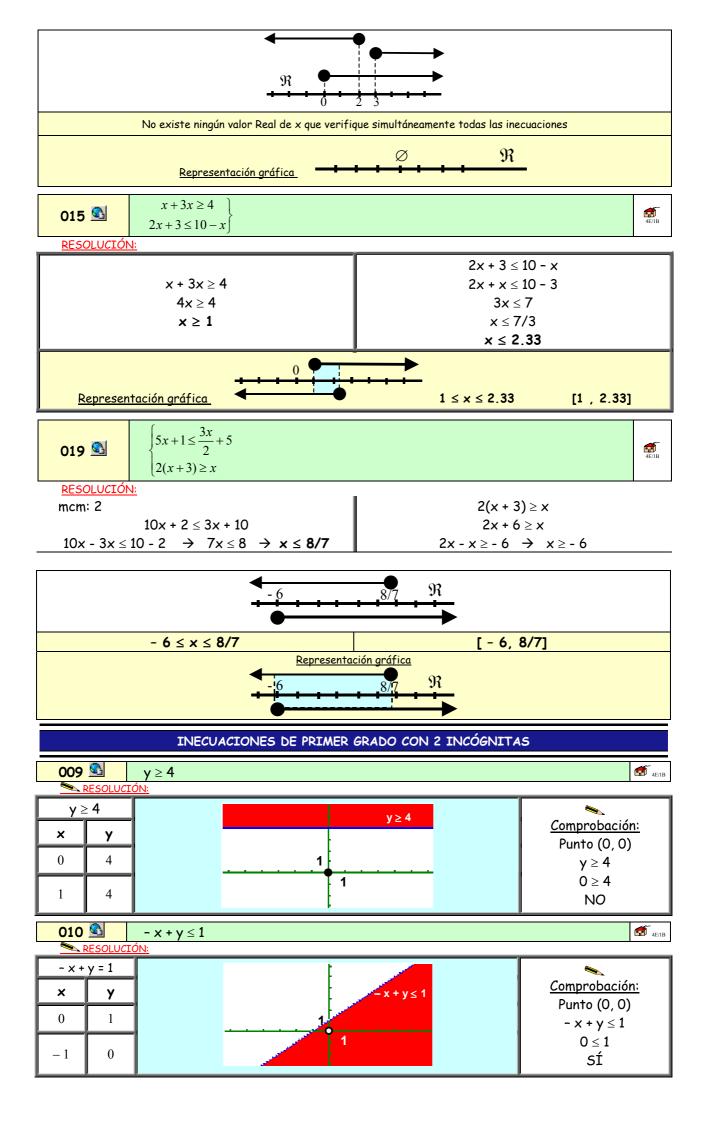
$$\begin{array}{c}
 x + 3 \le 5 \\
 x + 3 \le 2x \\
 x \ge 0
 \end{array}$$

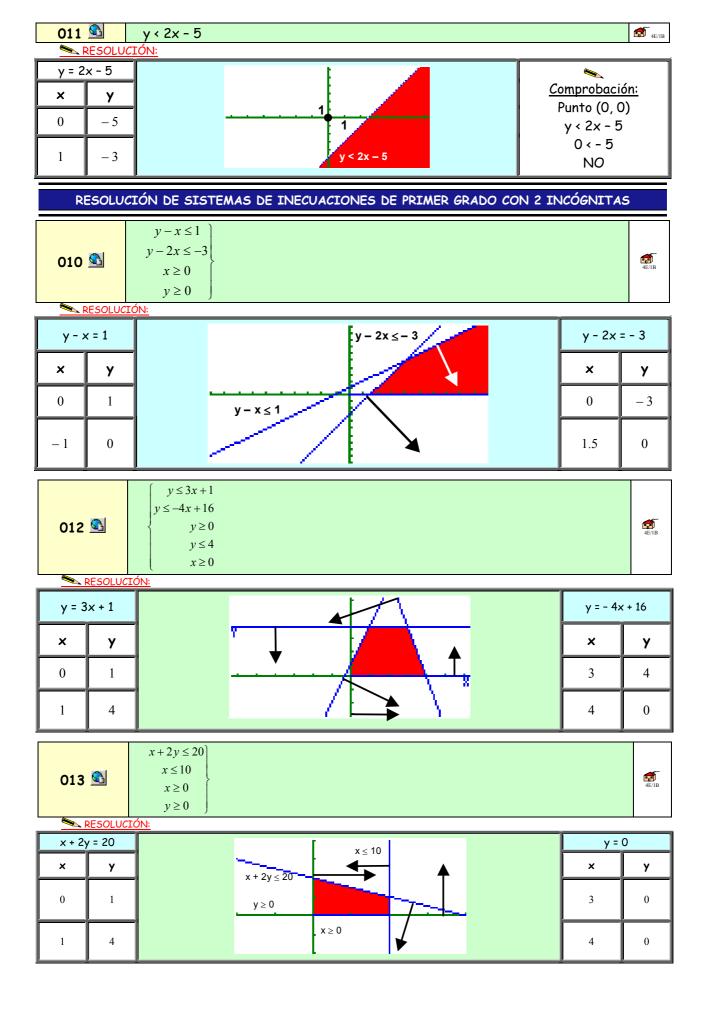
RESOLUCIÓN:

$$x \le 5 - 3$$
$$x \le 2$$

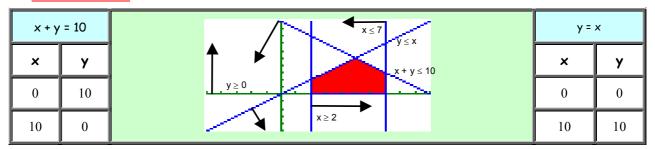
$$x - 2x \le -3$$

- $x \le -3$

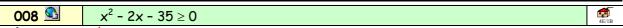




RESOLUCIÓN:



RESOLUCIÓN DE INECUACIONES DE SEGUNDO GRADO



Factorizamos con la ayuda de la fórmula de la ecuación de 2º grado

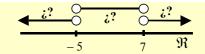
$$\mathbf{x} = \frac{2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-35)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 140}}{2} = \frac{2 \pm 12}{2} = \begin{cases} \frac{2 + 12}{2} = 7\\ \frac{2 - 12}{2} = -5 \end{cases}$$

$$(x - 7)(x + 5) \ge 0$$

Comprobamos los valores que nos hacen cero cada uno de los factores:

$$x = 7$$
 $x = -5$

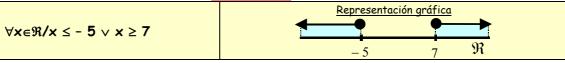
Estos 2 valores determinan 3 intervalos en la recta real:

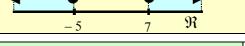


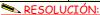
Estudiamos el signo de la función en cada uno de estos intervalos

	(x - 7)	(x + 5)	(x - 7)(x + 5)	ڊ0≥ خ
x < - 5	+	+	+	sÍ
-5<×<7	-	+	-	NO
x > 7	-	-	+	sí

SOLUCIÓN:







Factorizamos con la ayuda de la fórmula de la ecuación de 2º grado

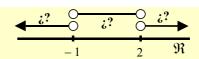
$$x = \frac{1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 + 8}}{2} = \frac{1 \pm 3}{2} = \begin{cases} x_1 = \frac{1 + 3}{2} = 2\\ x_2 = \frac{1 - 3}{2} = -1 \end{cases}$$

$$(x - 2)(x + 1) \ge 0$$

Comprobamos los valores que nos hacen cero cada uno de los factores:

$$x = 2 \qquad x = -1$$

Estos 2 valores determinan 3 intervalos en la recta real:



Estudiamos el signo de la función en cada uno de estos intervalos

	(x - 2)	(x + 1)	(x - 2)(x + 1)	¿Verifica la inecuación? ≥ 0
x < - 1	-	-	+	SÍ
-1 <x<2< td=""><td>-</td><td>+</td><td>-</td><td>NO</td></x<2<>	-	+	-	NO
x > 2	+	+	+	SÍ

SOLUCIÓN:

 $\forall x \in \Re/x \le -1 \lor x \ge 2$

010 💁

$$x^2 - 6x + 9 < 0$$

RESOLUCIÓN MÉTODO 1:

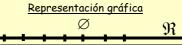
Se trata de un trinomio cuadrado perfecto:

$$(x-3)^2<0$$

Como el cuadrado de una expresión Real siempre el positivo:

SOLUCIÓN:

No existe ningún valor Real de "x" que verifique la inecuación



RESOLUCIÓN MÉTODO 2:

Factorizamos con la ayuda de la fórmula de la ecuación de 2º grado

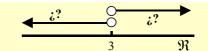
$$x = \frac{6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 9}}{2 \cdot 1} = \frac{6 \pm \sqrt{36 - 36}}{2} = \frac{6 \pm 0}{2} = \begin{cases} \frac{6 + 0}{2} = 3\\ \frac{6 - 0}{2} = 3 \end{cases}$$

$$(x - 3)(x - 3) < 0$$

Comprobamos los valores que nos hacen cero cada uno de los factores:

$$x = 3$$
 $x = 3$

Este valor determina 2 intervalos en la recta real:

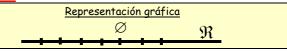


Estudiamos el signo de la función en cada uno de estos intervalos

	(x - 3)	(x - 3)	(x - 3)(x - 3)	ć < 0 ?
x < 3	-	-	+	NO
x > 3	+	+	+	NO

SOLUCIÓN:

No existe ningún valor Real de "x" que verifique la inecuación



016

 $x^2 + 10x + 25 < 0$

4E/1E

RESOLUCIÓN MÉTODO 1:

Se trata de un trinomio cuadrado perfecto:

$$(x + 5)^2 < 0$$

Como el cuadrado de una expresión Real siempre el positivo:

SOLUCIÓN:

RESOLUCIÓN MÉTODO 2:

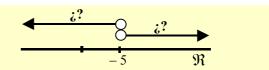
Se trata de un trinomio cuadrado perfecto:

$$(x + 5)^2 < 0$$

Comprobamos los valores que nos hacen cero la expresión:

$$x = -5$$

Este valor determina 2 intervalos en la recta real:



Estudiamos el signo de la función en cada uno de estos intervalos

	$(x + 5)^2$	۷0
x < - 5	+	NO
x>-5	+	NO

SOLUCIÓN:

No existe ningún valor Real de "x" que verifique la inecuación

$$-x^2 + \frac{2}{3}x - \frac{1}{9} < 0$$

m.c.m.: 9

$$-9x^2 + 6x - 1 < 0$$

multiplicamos ambos miembros por (-1)

$$9x^2 - 6x + 1 > 0$$

Se trata de un trinomio cuadrado perfecto:

$$(3x - 1)^2 > 0$$

RESOLUCIÓN MÉTODO 1:

Como el cuadrado de una expresión Real siempre el positivo:

SOLUCIÓN:

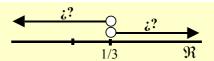
∀x∈ℜ

NESOLUCIÓN MÉTODO 2:

Comprobamos los valores que nos hacen cero la expresión:

$$3x - 1 = 0 \rightarrow 3x = 1 \rightarrow x = 1/3$$

Este valor determina 2 intervalos en la recta real:

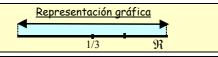


Estudiamos el signo de la función en cada uno de estos intervalos

	$(3x - 1)^2$	> 0
x < 1/3	+	SÍ
x > 1/3	+	SÍ

SOLUCIÓN:

∀x∈ℜ



RESOLUCIÓN DE INECUACIONES DE PRIMER GRADO CON LA INCÓGNITA EN EL DENOMINADOR

$$\frac{2x-5}{x+7} \le -1$$

RESOLUCIÓN:

$$\frac{2x-5}{x+7}$$
 + 1 \le 0

 $m.c.m. \times + 7$

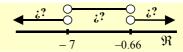
$$\frac{2x-5+x+7}{x+7} \le 0 \quad \rightarrow \quad \frac{3x+2}{x+7} \le 0$$

Comprobamos los valores que nos hacen cero el numerador y el denominador:

Numerador:
$$3x + 2 = 0 \rightarrow 3x = -2 \rightarrow x = -2/3 \rightarrow x \cong -0.66$$

Denominador: $x + 7 = 0 \rightarrow x = -7$

Estos 2 valores determinan 3 intervalos en la recta real:



Estudiamos el signo de la función en cada uno de estos intervalos

	3x + 2	x + 7	$\frac{3x+2}{x+7}$	$\frac{3x+2}{x+7} \le 0$?
x < - 7	-	-	+	NO
-7 < x < -2/3	-	+	-	sí
x>-2/3	+	+	+	NO

🕟 iii 0J0 !!! 🙆

el valor que hace O el denominador no pertenece a la solución.

009 💁

RESOLUCTÓN:

$$\frac{x+25}{7-x}$$
 - 3 \ge 0

m.c.m.7 - x

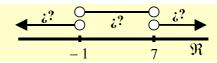
$$\frac{x+25-3(7-x)}{7-x} \ge 0 \to \frac{x+25-21+3x}{7-x} \ge 0 \to \frac{4x+4}{7-x} \ge 0$$

Comprobamos los valores que hacen cero el numerador y el denominador:

Numerador: $4x + 4 = 0 \rightarrow 4x = -4 \rightarrow x = -1$

Denominador: $7 - x = 0 \rightarrow x = 7$

Estos 2 valores determinan 3 intervalos en la recta real:

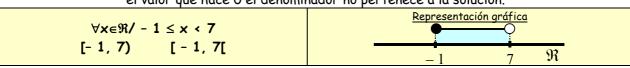


Estudiamos el signo de la función en cada uno de estos intervalos

	4x + 4	7 - x	$\frac{4x+4}{7-x}$	¿Verifica la inecuación? $ \frac{4x+4}{7-x} \ge 0 ? $
x < - 1	-	+	-	NO
-1<×<7	+	+	+	SÍ
x > 7	+	-	-	NO

🕝 iii ојо !!! 👍

el valor que hace O el denominador no pertenece a la solución.



010 💁

 $\frac{2x+3}{x-2} \ge 1$

RESOLUCIÓN:

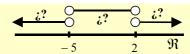
$$\frac{2x+3}{x-2} - 1 \ge 0$$

$$\frac{2x+3-(x-2)}{x-2} \ge 0 \to \frac{2x+3-x+2}{x-2} \ge 0 \to \frac{x+5}{x-2} \ge 0$$

Comprobamos los valores que nos hacen cero el numerador y el denominador:

Numerador: $x + 5 = 0 \rightarrow x = -5$ Denominador: $x - 2 = 0 \rightarrow x = 2$

Estos 2 valores determinan 3 intervalos en la recta real:

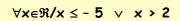


Estudiamos el signo de la función en cada uno de estos intervalos

	x + 5	x - 2	$\frac{x+5}{x-2}$	$\frac{x+5}{x-2} \ge 0$?
x < - 5	-	-	+	sí
-5 <x<2< td=""><td>+</td><td>-</td><td>-</td><td>NO</td></x<2<>	+	-	-	NO
x > 2	+	+	+	sí

🕟 iii 0J0 !!! 🙆

el valor que hace O el denominador no pertenece a la solución.



011 💁

$$\frac{2x+3}{x-1} \ge 1$$

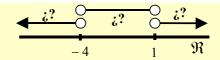
m.c.m. x - 1

$$\frac{2x+3-(x-1)}{x-1} \ge 0 \rightarrow \frac{2x+3-x+1}{x-1} \ge 0 \rightarrow \frac{x+4}{x-1} \ge 0$$

Comprobamos los valores que nos hacen cero el numerador y el denominador:

Numerador: $x + 4 = 0 \rightarrow x = -4$ Denominador: $x - 1 = 0 \rightarrow x = 1$

Estos 2 valores determinan 3 intervalos en la recta real:

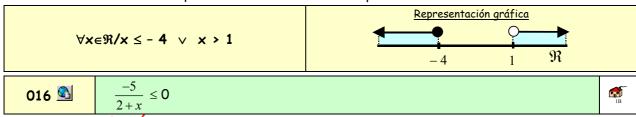


Estudiamos el signo de la función en cada uno de estos intervalos

	x + 4	× - 1	$\frac{x+4}{x-1}$	$ \dot{c} \frac{x+4}{x-1} \ge 0 $?
x < - 4	-	-	+	sí
- 4 < x < 1	+	-	-	NO
x > 1	+	+	+	SÍ

iii 0J0 !!!

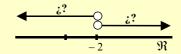
el valor que hace O el denominador no pertenece a la solución.



RESOLUCIÓN MÉTODO 1

Denominador: $2 + x = 0 \rightarrow x = -2$

Este valor determina 2 intervalos en la recta real:

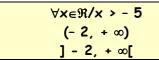


Estudiamos el signo de la función en cada uno de estos intervalos

	- 5	2 + x	$\frac{-5}{2+x}$	$\frac{-5}{2+x} \le 0$?
x < - 2	-	-	+	NO
x > - 2	-	+	-	SÍ

iii 010 iii

el valor que hace O el denominador no pertenece a la solución.

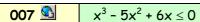


RESOLUCIÓN MÉTODO 2

iii Pensemos un poco !!!

 $\frac{-5}{2+x}$ será menor o igual que O cuando el denominador sea positivo

RESOLUCIÓN DE INECUACIONES DE TERCER GRADO O SUPERIOR



RESOLUCIÓN:

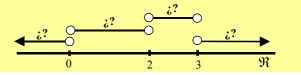
1.- Se puede sacar factor común: $x \cdot (x^2 - 5x + 6)$ 2.- Trinomio cuadrado perfecto: NO 3.- Diferencia de cuadrados: NO Factorizamos por el método de Ruffini:

$$\begin{array}{c|cccc}
 & 1 & -5 & 6 \\
 & 2 & -6 \\
\hline
 & 1 & -3 & 0 \\
\hline
 & \mathbf{x} \cdot (\mathbf{x} - \mathbf{2}) (\mathbf{x} - \mathbf{3}) \leq \mathbf{0}
\end{array}$$

Comprobamos los valores que nos hacen cero cada uno de los factores:

$$x = 0$$
; $x = 2$; $x = 3$

Estos 3 valores determinan 4 intervalos en la recta real:



Estudiamos el signo de la función en cada uno de estos intervalos

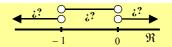
	×	(x - 2)	(x + 3)	$x \cdot (x - 2) (x + 3)$	≤ 0
x < 0	-	-	-	-	SÍ
0 < x < 2	+	-	-	+	NO
2 < x < 3	+	+	-	-	SÍ
x > 3	+	+	+	+	NO

SOLUCIÓN:

1.- Se puede sacar factor común: $2x(x^2+2x+1)$ 2.- Trinomio cuadrado perfecto: $2x(x+1)^2 \ge 0$ Comprobamos los valores que hacen cero cada uno de los factores:

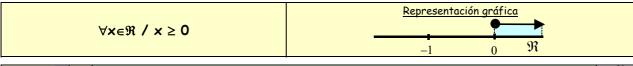
$$x = 0$$
; $x = -1$

Estos 2 valores determinan 3 intervalos en la recta real:



Estudiamos el signo de la función en cada uno de estos intervalos

	2x	$(x + 1)^2$	$2x(x + 1)^2$	¿ ≥ 0 ?
x < - 1	-	+	-	NO
-1 <x<0< td=""><td>-</td><td>+</td><td>-</td><td>NO</td></x<0<>	-	+	-	NO
x > 0	+	+	+	sí



009 💁

 $(x-1)^3 + 2x < 2$

E IB

RESOLUCIÓN:

Desarrollamos la expresión:

$$x^{3} + (-1)^{3} + 3x^{2} (-1) + 3x(-1)^{2} + 2x < 2$$

 $x^{3} - 1 - 3x^{2} + 3x + 2x < 2$
 $x^{3} - 3x^{2} + 5x - 1 < 2$
 $x^{3} - 3x^{2} + 5x - 3 < 0$

Factorizamos la expresión por el método de Ruffini:

$$(x-1)(x^2-2x+3)<0$$

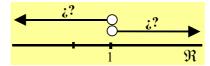
Seguimos factorizando con la ayuda de la fórmula de la ecuación de 2º grado

$$x = \frac{2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 - 12}}{2} = \frac{2 \pm \sqrt{-8}}{2} \notin \Re$$

Comprobamos los valores que nos hacen cero cada uno de los factores:

$$x = 1$$

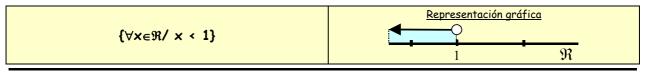
Este valor determina 2 intervalos en la recta real:



Estudiamos el signo de la función en cada uno de estos intervalos

Estudiamos el signo de la función en cada uno de estos intervalos

	(x - 1)	$x^2 - 2x + 3$	$(x-1)(x^2-2x+3)$	۷ 0
x < 1	~	+	-	sÍ
x > 1	+	+	+	NO



RESOLUCIÓN DE INECUACIONES CON VALOR ABSOLUTO

Se puede aplicar la propiedad:

Si
$$a \ge 0$$
 \land $|x| \le a \rightarrow -a \le x \le a$

$$-5 \le -2x + 2 \le 5 \rightarrow -5 - 2 \le -2x + 2 - 2 \le 5 - 2 \rightarrow -7 \le -2x \le 3$$
Si $c < 0 \rightarrow a \le b \Leftrightarrow a \cdot c \ge b \cdot c$

 $7 \ge 2x \ge -3 \rightarrow 7 \cdot \frac{1}{2} \ge 2x \cdot \frac{1}{2} \ge -3 \cdot \frac{1}{2} \rightarrow 3.5 \ge x \ge -1.5$

 $-1.5 \le x \le 3.5$

RESOLUCIÓN:

Se puede aplicar la propiedad:

 $7 \ge \frac{x}{3} \ge -3 \rightarrow 7.3 \ge \frac{x}{3}.3 \ge -3.3 \rightarrow 21 \ge x \ge -9$

 $-9 \le x \le 21$

IR

012 $| (-3/2) x + 1 | \le 3$ RESOLUCIÓN:

Se puede aplicar la propiedad:

Si
$$a \ge 0$$
 $\wedge |x| \le a \rightarrow -a \le x \le a$

$$-3 \le \frac{-3}{2}x + 1 \le 3 \rightarrow -3 - 1 \le \frac{-3}{2}x + 1 - 1 \le 3 - 1 \rightarrow -4 \le \frac{-3}{2}x \le 2$$

Si
$$\mathbf{c} < \mathbf{0} \rightarrow \mathbf{a} \leq \mathbf{b} \Leftrightarrow \mathbf{a} \cdot \mathbf{c} \geq \mathbf{b} \cdot \mathbf{c}$$

$$4 \geq \frac{3}{2} \times 2 = 2$$

$$4 \cdot \frac{2}{3} \ge \frac{3}{2} \times \frac{2}{3} \ge -2 \cdot \frac{2}{3} \rightarrow 8/3 \ge x \ge -4/3$$

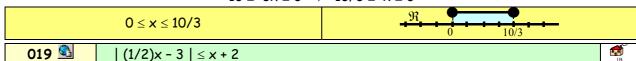
 $-4/3 \le x \le 8/3$

013 $| 5 - 3x | \le 5$ RESOLUCIÓN:

Se puede aplicar la propiedad:

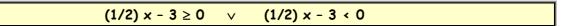
Si
$$a \ge 0$$
 \land $|x| \le a \rightarrow -a \le x \le a$
 $-5 \le 5 - 3x \le 5 \rightarrow -5 - 5 \le 5 - 3x - 5 \le 5 - 5 \rightarrow -10 \le -3x \le 0$
Si $a \ge 0$ \Rightarrow $a \le b \Leftrightarrow a \cdot c \ge b \cdot c$

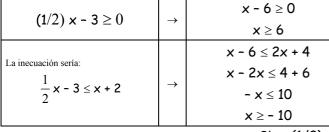
 $10 \ge 3x \ge 0 \rightarrow 10/3 \ge x \ge 0$

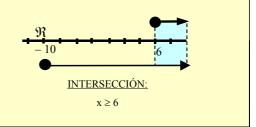


 $|(1/2)x - 3| \le x + 2$ RESOLUCIÓN:

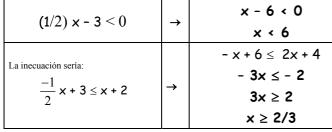
Pueden ocurrir 2 cosas:

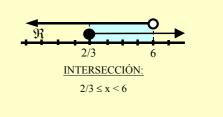




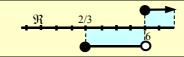


Si (1/2) x - 3 < 0





Efectuamos la unión gráfica de ambas soluciones:



SOLUCIÓN algebraica:

 $\forall \ x \in \Re \ / \ x \ge 2/3$ [2/3, +\infty] [2/3, +\infty]

RESOLUCIÓN:

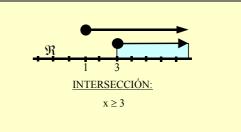
En este caso NO PODEMOS aplicar la propiedad: Si $a \ge 0$ \land $|x| \le a \rightarrow -a \le x \le a$ Así que lo resolveremos a través del estudio de hipótesis:

Pueden ocurrir 2 cosas:

x - 3 ≥ 0 ∨ x - 3 < 0

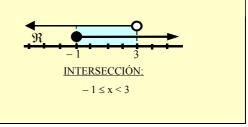
Si $x - 3 \ge 0$

x - 3 ≥ 0	\rightarrow	x ≥ 3
		$2 - x + 3 \le 3x + 1$ $- x - 3x \le 1 - 2 - 3$
La inecuación sería: $2 - (x - 3) \le 3x + 1$	\rightarrow	$-4x \le -4$
		4x ≥ 4
		x ≥ 1

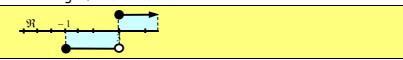


Si x - 3 < 0

La inecuación sería: $2 - (-x + 3) \le 3x + 1$ \Rightarrow $2 + x - 3 \le 3x + 1$ $x - 3x \le 1 - 2 + 3$ $-2x \le 2$ $2x \ge -2$ $x \ge -1$	x - 3 < 0	\rightarrow	x < 3
		→	$x - 3x \le 1 - 2 + 3$ $-2x \le 2$ $2x \ge -2$



Efectuamos la unión gráfica de ambas soluciones:



SOLUCIÓN algebraica:

$\forall x \in \Re / x \ge -1$	[-1, +∞)	[-1, +∞[