ECUACIONES CON VALORES ABSOLUTOS

Estas ecuaciones pueden presentarse asociadas a cualquier expresión, pero en algún término figura el valor absoluto.

Por ejemplo:

$$|2x-1|=3;$$
 $|x^2-3x|=0;$ $\frac{4}{x}=|x|;$ $\frac{|x|}{2-x}=1;$ $2x|4-x|=0$

Todas se resuelven teniendo en cuenta el significado de valor absoluto:

$$|E(x)| = c \iff E(x) = c \text{ o } E(x) = -c.$$

Esto implica que cada ecuación da lugar a dos ecuaciones. (En algún caso conviene comprobar el resultado).

Ejemplos:

a)
$$|2x-1| = 3 \Leftrightarrow 2x-1 = 3 \text{ 6 } 2x-1 = -3$$
. $\begin{cases} 2x-1=3 \Rightarrow x=2 \\ 2x-1=-3 \Rightarrow x=-1 \end{cases}$. Las soluciones son $x=2$ y $x=-1$.

b) La ecuación $|x^2 - 3x| = 2$ da lugar a $|x^2 - 3x| = 2$ y a $|x^2 - 3x| = -2$, equivalentes a su vez a $|x^2 - 3x| = 2$ y a $|x^2 - 3x| = 2$, cuyas soluciones son: $|x| = \frac{3 + \sqrt{17}}{2}$, $|x| = \frac{3 - \sqrt{17}}{2}$, |x| = 1 y |x| = 2.

c)
$$\frac{4}{x} = |x| \iff 4 = x \cdot |x| \implies (\text{si } x > 0, \text{ como } |x| = x) \implies 4 = x^2 \implies x = -2 \text{ o } x = 2.$$

→ La solución x = -2 no es válida, pues si se sustituye: $\frac{4}{-2} \neq |-2|$.

 \rightarrow Si x < 0, como |x| = -x, de $4 = x \cdot |x| \Rightarrow 4 = x \cdot (-x) \Rightarrow 4 = -x^2$, que no tiene solución. (Recuerda que $x^2 \ge 0$ y $-x^2 < 0$).

d) La ecuación $\frac{|x|}{2-x} = 1 \Leftrightarrow |x| = 2-x$, que a su vez define dos ecuaciones: -x = 2-x, que es imposible; y x = 2-x, cuya solución es x = 1.

e) 2x|4-x|=0 es más fácil. Sus soluciones son 2x=0 y $4-x=0 \Rightarrow x=0$ o x=4.

Pequeños retos

Resuelve las siguientes ecuaciones:

a)
$$|3x+1| = 2$$
 b) $|x+3| = 2x-1$ c) $|x+6| = x^2$ d) $\frac{2}{x} = |x-1|$

Soluciones:

a)
$$x = -1$$
, $x = 1/3$. b) $x = -2/3$, $x = 4$. c) $x = -2$, $x = 3$. d) $x = 2$.