Examen de Matemáticas 1º de ESO

[1,5 puntos] Calcula el resultado de las siguientes operaciones con números naturales.

a)
$$19+18:(9-3)\cdot 4$$

b)
$$32-3\cdot8+2\cdot(15-3\cdot4)$$
 c) $48:6\cdot(9-2\cdot3)$

c)
$$48:6\cdot(9-2\cdot3)$$

2. [1,5 puntos] Realiza las siguientes operaciones usando las propiedades de las potencias. Expresa el resultado como una potencia única.

a)
$$3^7 : 3^5 \cdot 3^9$$

b)
$$(7^2 \cdot 7)^3 : (7^3 : 7)^2$$

b)
$$(7^2 \cdot 7)^3 : (7^3 : 7)^2$$
 c) $2 \cdot [(4^2)^3 : 8^2] : 4$

[1 punto] Realiza las siguientes operaciones combinadas con números naturales.

a)
$$21-5\cdot(8-2\cdot3)-[(3+1)\cdot5-3\cdot5]$$

b)
$$\left(\sqrt{100} - 3\right)^2 + 2 \cdot \left[5 \cdot \sqrt{36} - \left(3^2 - \sqrt{16}\right)^2\right]$$

- 4. [1 punto] Escribe:
 - Los múltiplos de 37 situados entre 140 y 260.
 - Todos los divisores de 78.
- 5. [2 puntos] Escribe las factorizaciones de cada uno de los números que aparecen en ambos apartados y halla:
 - a) El mínimo común múltiplo de 147 y 126.
 - b) El máximo común divisor de 180, 504 y 756.

Problemas

- 6. [1 punto] Un chico compra 5 camisas a 42 € cada una. ¿Cuántas camisas se hubiese podido comprar si le hubiesen costado 12 € menos cada una?
- 7. [1 punto] Un cometa es visible desde la Tierra cada 16 años, y otro, cada 24 años. El último año que fueron visibles conjuntamente fue en 1980, ¿en qué año volverán a coincidir?
- [1 punto] Tenemos una plancha de madera de 52 cm de largo y 40 cm de ancho. Se quiere cortar en cuadrados iguales que tengan la mayor área posible. ¿Cuál debe ser la longitud del lado de cada cuadrado? ¿Cuántos cuadrados se obtienen de la plancha?

Soluciones

1. Calcula el resultado de las siguientes operaciones con números naturales.

a)
$$19+18:(9-3)\cdot 4=19+18:6\cdot 4=19+3\cdot 4=19+12=31$$

b)
$$32-3\cdot8+2\cdot(15-3\cdot4)=32-24+2\cdot(15-12)=32-24+2\cdot3=32-24+6=8+6=14$$

c)
$$48:6\cdot(9-2\cdot3)=48:6\cdot(9-6)=48:6\cdot3=8\cdot3=24$$

 Realiza las siguientes operaciones usando las propiedades de las potencias. <u>Expresa el resultado como una</u> potencia única.

a)
$$3^7 : 3^5 \cdot 3^9 = 3^2 \cdot 3^9 = 3^{11}$$

b)
$$(7^2 \cdot 7)^3 : (7^3 : 7)^2 = (7^3)^3 : (7^2)^2 = 7^9 : 7^4 = 7^5$$

c)
$$2 \cdot \left[\left(4^2 \right)^3 : 8^2 \right] : 4 = 2 \cdot \left[\left(\left(2^2 \right)^2 \right)^3 : \left(2^3 \right)^2 \right] : 2^2 = 2 \cdot \left[2^{12} : 2^6 \right] : 2^2 = 2 \cdot 2^6 : 2^2 = 2^7 : 2^2 = 2^5$$

3. Realiza las siguientes operaciones combinadas con números naturales.

a)
$$21-5\cdot(8-2\cdot3)-[(3+1)\cdot5-3\cdot5]=21-5\cdot(8-6)-[4\cdot5-3\cdot5]=21-5\cdot2-(20-15)=$$

= $21-10-5=11-5=6$

b)
$$(\sqrt{100} - 3)^2 + 2 \cdot \left[5 \cdot \sqrt{36} - (3^2 - \sqrt{16})^2\right] = (10 - 3)^2 + 2 \cdot \left[5 \cdot 6 - (9 - 4)^2\right] = 7^2 + 2 \cdot \left[30 - 5^2\right] = 49 + 2 \cdot \left[30 - 25\right] = 49 + 2 \cdot 5 = 49 + 10 = 59$$

- 4. Escribe:
 - a) Los múltiplos de $\,37\,$ situados entre $\,140\,$ y $\,260$: $\left\{148,\,185,\,222,\,259\right\}$
 - b) Todos los divisores de 78: $Div(78) = \{1, 2, 3, 6, 13, 26, 39, 78\}$
- 5. Escribe las factorizaciones de cada uno de los números que aparecen en ambos apartados y halla:
 - a) El mínimo común múltiplo de 147 y 126.

b) El máximo común divisor de 180, 504 y 756.

$$180 = 2^{2} \cdot 3^{2} \cdot 5$$

$$504 = 2^{3} \cdot 3^{2} \cdot 7$$

$$\Rightarrow \text{mcd}(180, 504, 756) = 2^{2} \cdot 3^{2} = 4 \cdot 9 = 36$$

$$756 = 2^{2} \cdot 3^{3} \cdot 7$$

Problemas

6. Un chico compra 5 camisas a 42 € cada una. ¿Cuántas camisas se hubiese podido comprar si le hubiesen costado 12 € menos cada una?

Solución:

Como el chico compra 5 camisas a 42 \in cada una, se gasta un total de $42 \cdot 5 = 210 \in$.

Si cada camisa costara 12 € menos, entonces cada una de ella costaría 30 € y con los 210 € se hubiese podido comprar 210:30=7 camisas.

7. Un cometa es visible desde la Tierra cada 16 años, y otro, cada 24 años. El último año que fueron visibles conjuntamente fue en 1980, ¿en qué año volverán a coincidir?

Solución:

La solución viene dada por el mínimo común múltiplo de 16 y 24.

$$\begin{array}{c} 16 = 2^4 \\ 24 = 2^3 \cdot 3 \end{array} \Rightarrow mcm \left(16, \ 24 \right) = 2^4 \cdot 3 = 16 \cdot 3 = 48 \ .$$
 Esto quiere decir que volverán a ser visibles conjuntamente

pasados 48 años. Como fueron visibles conjuntamente en 1980, volverán a coincidir en el año 2028.

8. Tenemos una plancha de madera de 52 cm de largo y 40 cm de ancho. Se quiere cortar en cuadrados iguales que tengan la mayor área posible. ¿Cuál debe ser la longitud del lado de cada cuadrado? ¿Cuántos cuadrados se obtienen de la plancha?

Solución:

La solución viene dada por el máximo común divisor de 52 y 40.

$$52 = 2^2 \cdot 13$$

$$40 = 2^3 \cdot 5$$

$$\Rightarrow mcd(52, 40) = 2^2 = 4 .$$
 Por tanto la longitud del lado de cada cuadrado será de 4 cm.

Dividimos el largo y el ancho entre 4 para ver cuantos cuadrados hay a lo largo y a lo ancho.

$$52:4=13 \text{ y } 40:4=10$$

Multiplicando se tiene: $13 \cdot 10 = 130$, es decir, de la plancha se obtienen un total de 130 cuadrados.

Esto último se podría haber hecho de otra manera. El área de cada cuadrado es $4^2 = 16 \, \text{cm}^2$. El área de la plancha es $52 \cdot 40 = 2080 \, \text{cm}^2$. Dividiendo obtenemos el mismo resultado que antes: 2080 : 16 = 130, es decir, de la plancha se obtienen un total de 130 cuadrados.