Dada $y = x \cdot e^{2x}$. Dibujar gráfica calculando dominio, asíntotas e intervalos de crecimiento y decrecimiento, máximos y mínimos relativos, intervalos de concavidad y convexidad, y puntos de inflexión

1° Dominio de f(x): $D[f(x)] = \Re$

2º Asíntotas:

*A.V. : No tiene, la función existe $\forall x \in \Re$

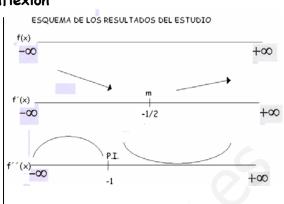
*AH.:

A) Se calcula el
$$\lim_{x \to +\infty} f(x)$$

A) Se calcula el
$$\lim_{x\to +\infty} f(x)$$

$$\lim_{x\to +\infty} \left(x.e^{2x}\right) = +\infty.e^{+\infty} = +\infty \quad \text{Luego} \quad \text{no} \quad \text{hay}$$

asíntota horizontal.



B) Se calcula el $\lim_{x \to -\infty} f(x)$

$$\lim_{x \to -\infty} \left(x \cdot e^{2x} \right) = -\infty \cdot e^{-\infty} = -\infty \cdot 0 \Rightarrow \lim_{x \to -\infty} \left(x \cdot e^{2x} \right) = \lim_{x \to -\infty} \frac{x}{e^{-2x}} \stackrel{L'Hopital}{=} \lim_{x \to -\infty} \frac{1}{-2 \cdot e^{-2x}} = \frac{1}{-\infty} = -0$$

Asíntota horizontal "y=0" en el -∞; la curva se encuentra por debajo de la asíntota.

*A.O. : y= m x+n

Sólo podrá existir en el +∞

A) Cuando $x \to +\infty$

1° Se calcula "m":

-
$$m = \lim_{x \to +\infty} \left(\frac{x \cdot e^{2x}}{x} \right) = \lim_{x \to +\infty} e^{2x} = e^{+\infty} = +\infty$$

Por lo tanto no existe una asíntota oblicua en el +∞. : curvatura

Monotonía, Máximos y mínimos relativos:

Calculamos y´=0 para estudiar el cambio de monotonía

$$y' = e^{2x} + x \cdot 2 \cdot e^{2x} = e^{2x} (1 + 2x)$$

 $y' = 0 \implies 0 = 1 + 2x \implies x = \frac{-1}{2}$

$$\forall x \in \left(-\infty, \frac{-1}{2}\right)$$
 $y'(-4) < 0$ decreciente

$$\forall x \in \left(\frac{-1}{2}, +\infty\right) \Rightarrow y'(4) > 0$$
 creciente

$$x = \frac{-1}{2}$$
 ; $f(\frac{-1}{2}) = \frac{-1}{2} e^{2(\frac{-1}{2})} = \frac{-1}{2e} \approx -0.1839$ $\Rightarrow (\frac{-1}{2}, \frac{-1}{2e})$

En $\left(\frac{-1}{2}, \frac{-1}{2e}\right)$ existe un mínimo relativo.

4º Curvatura, puntos de inflexión.

$$y^{\prime\prime}=2.e^{2x}+\left(1+2x\right)2.e^{2x}=e^{2x}\left(4+4x\right)=4e^{2x}\left(x+1\right)$$

$$y^{\prime\prime}=0\Rightarrow 4e^{2x}\left(x+1\right)=0\Rightarrow x+1=0\Rightarrow x=-1$$

$$\forall x\in\left(-\infty,-1\right)\quad y^{\prime\prime}(-4)<0 \qquad \text{convexa}$$

$$\forall x\in\left(1,+\infty\right)\Rightarrow \quad y^{\prime}(4)>0 \qquad \text{cóncava}$$

$$x = -1$$
 ; $f(-1) = -1.e^{-2} = \frac{-1}{e^2} \approx -0.1353.$ $\left(-1, \frac{-1}{e^2}\right)$

Punto de inflexión. $\left(-1, \frac{-1}{e^2}\right)$

