15 PARÁMETROS ESTADÍSTICOS

2 DOS TIPOS DE PARÁMETROS ESTADÍSTICOS

Página 234

- 1 Calcula la media, la mediana y la moda de cada una de estas distribuciones estadísticas:
 - a) 4, 5, 6, 6, 6, 6, 7, 11, 12, 17
 - b) 10, 12, 6, 9, 10, 8, 9, 10, 14, 2
 - c) 2, 3, 3, 3, 4, 5, 6, 6, 6, 6, 3, 7
 - d) 1, 2, 3, 4, 5, 4, 3, 2, 1

a)
$$\bar{x} = \frac{4+5+6+6+6+6+7+11+12+17}{10} = \frac{80}{10} = 8$$

$$Me = \frac{6+6}{2} = 6$$

$$Mo = 6$$

b) Ordenamos los datos de menor a mayor: 2, 6, 8, 9, 9, 10, 10, 10, 12, 14

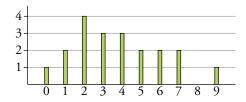
$$\bar{x} = \frac{2+6+8+9+9+10+10+10+12+14}{10} = \frac{90}{10} = 9$$

 $Me = \frac{9+10}{2} = 9,5$

- Mo = 10
- c) Ordenamos los datos de menor a mayor: 2, 3, 3, 3, 3, 4, 5, 6, 6, 6, 6, 7

$$\bar{x} = \frac{2+3+3+3+3+4+5+6+6+6+6+7}{12} = \frac{54}{12} = 4,5$$

$$Me = \frac{4+5}{2} = 4,5$$


$$Mo = 3 \text{ y } 6$$

d) Ordenamos los datos de menor a mayor: 1, 1, 2, 2, 3, 3, 4, 4, 5

$$\bar{x} = \frac{1+2+3+4+5+4+3+2+1}{9} = \frac{25}{9} \approx 2,78$$

$$Mo = 1, 2, 3 \text{ y } 4$$

2 Halla los parámetros de centralización de esta distribución dada por su diagrama de barras:

$$\bar{x} = \frac{0 + 2 \cdot 1 + 4 \cdot 2 + 3 \cdot 3 + 3 \cdot 4 + 2 \cdot 5 + 2 \cdot 6 + 2 \cdot 7 + 9}{20} = \frac{76}{20} = 3,8$$

Son 20 valores así que la mediana estará entre los que ocupen las posiciones 10 y 11.

$$Me = \frac{3+4}{2} = 3,5$$

$$Mo = 2$$

Página 235

3 Halla los parámetros de dispersión de las distribuciones del ejercicio 1 de la página anterior.

a) Recorrido o rango = 17 - 4 = 13

$$DM = \frac{|4-8|+|5-8|+|6-8|+|6-8|+|6-8|+|6-8|+|7-8|+|11-8|+|12-8|+|17-8|}{10} = \frac{4+3+2+2+2+2+1+3+4+9}{10} = \frac{32}{10} = 3,2$$

$$Varianza = \frac{4^2+5^2+6^2+6^2+6^2+6^2+7^2+11^2+12^2+17^2}{10} - 8^2 = \frac{16+25+36+36+36+36+49+121+144+289}{10} - 64 = 78,8-64 = 14,8$$

$$\sigma = \sqrt{Varianza} = \sqrt{14,8} = 3,85$$

b) Recorrido o rango = 14 - 2 = 12

$$DM = \frac{|2-9| + |6-9| + |8-9| + |9-9| + |9-9| + |10-9| + |10-9| + |10-9|}{10} + \frac{|12-9| + |14-9|}{10} = \frac{7+3+1+0+0+1+1+1+3+5}{10} = \frac{22}{10} = 2,2$$

$$Varianza = \frac{2^2+6^2+8^2+9^2+9^2+10^2+10^2+10^2+12^2+14^2}{10} - 9^2 = \frac{4+36+64+81+81+100+100+100+144+196}{10} - 81 = 90,6 - 81 = 9,6$$

$$\sigma = \sqrt{\text{Varianza}} = \sqrt{9,6} = 3,1$$

c) Recorrido o rango = 7 - 2 = 5

$$DM = \frac{|2-4,5| + |3-4,5| + |3-4,5| + |3-4,5| + |3-4,5| + |3-4,5| + |4-4,5| + |5-4,5|}{12} + \frac{|6-4,5| + |6-4,5| + |6-4,5| + |6-4,5| + |6-4,5| + |7-4,5|}{12} = \frac{2,5+1,5+1,5+1,5+1,5+1,5+1,5+1,5+1,5+1,5+2,5}{12} = \frac{18}{12} = 1,5$$

$$Varianza = \frac{2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2 + 5^2 + 6^2 + 6^2 + 6^2 + 6^2 + 7^2}{12} - 4,5^2 = \frac{4+9+9+9+9+16+25+36+36+36+36+49}{12} - 20,25 = 22,83 - 20,25 = 2,58$$

$$\sigma = \sqrt{\text{Varianza}} = \sqrt{2,58} = 1,61$$

d) Recorrido o rango = 5 - 1 = 4

$$DM = \frac{\left|1 - \frac{25}{9}\right| + \left|1 - \frac{25}{9}\right| + \left|2 - \frac{25}{9}\right| + \left|2 - \frac{25}{9}\right| + \left|3 - \frac{25}{9}\right| + \left|3 - \frac{25}{9}\right| + \left|3 - \frac{25}{9}\right|}{9} + \frac{\left|4 - \frac{25}{9}\right| + \left|4 - \frac{25}{9}\right| + \left|5 - \frac{25}{9}\right|}{9} = \frac{\frac{16}{9} + \frac{16}{9} + \frac{7}{9} + \frac{7}{9} + \frac{2}{9} + \frac{2}{9} + \frac{11}{9} + \frac{11}{9} + \frac{20}{9}}{9} = \frac{92}{81} \approx 1,14$$

$$Varianza = \frac{1^2 + 1^2 + 2^2 + 2^2 + 3^2 + 3^2 + 4^2 + 4^2 + 5^2}{9} - \left(\frac{25}{9}\right)^2 = \frac{1 + 1 + 4 + 4 + 9 + 9 + 16 + 16 + 25}{9} - \frac{625}{81} = \frac{85}{9} - \frac{625}{81} = 1,73$$

$$G = \sqrt{Varianza} = \sqrt{1.73} = 1.31$$

$$\sigma = \sqrt{\text{Varianza}} = \sqrt{1,73} = 1,31$$

4 Halla de dos formas distintas la varianza de esta distribución: 8, 7, 11, 15, 9, 7, 13, 15.

7, 7, 8, 9, 11, 13, 15, 15

$$\bar{x} = \frac{7+7+8+9+11+13+15+15}{8} = \frac{85}{8} = 10,625$$

Forma 1

Promedio de los cuadrados de las distancias de los datos a la media:

Varianza =
$$\frac{(7-10,625)^2 + (7-10,625)^2 + (8-10,625)^2 + (9-10,625)^2 + (11-10,625)^2}{8} + \frac{(13-10,625)^2 + (15-10,625)^2 + (15-10,625)^2}{8} = \frac{3,625^2 + 3,625^2 + 2,625^2 + 1,625^2 + 0,375^2 + 2,375^2 + 4,375^2 + 4,375^2}{8} = 9,984$$

Forma 2

Promedio de los cuadrados menos el cuadrado de la media:

Varianza =
$$\frac{7^2 + 7^2 + 8^2 + 9^2 + 11^2 + 13^2 + 15^2 + 15^2}{8} - 10,625^2 =$$

$$= \frac{49 + 49 + 64 + 81 + 121 + 169 + 225 + 225}{8} - 112,89 = 122,875 - 112,891 = 9,984$$

3 CÁLCULO DE \overline{x} y σ en tablas de frecuencias

Página 236

- 1 Calcula la media de las siguientes distribuciones:
 - a) NÚMERO DE HIJOS E HIJAS

Xi								
fi	6	14	15	7	4	2	1	1

b) número de suspensos en esta evaluación

x_i	0	1	2	3	4
f_i	17	11	3	1	1

a)	x _i	0	1	2	3	4	5	6	7	
	f_i	6	14	15	7	4	2	1	1	50
	$x_i \cdot f_i$	0	14	30	21	16	10	6	7	104

$$\bar{x} = \frac{104}{50} = 2,08$$

$$\bar{x} = \frac{24}{33} \approx 0,727$$

2 Halla la media y la desviación típica de esta distribución:

x _i	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
1	12	12	12
2	15	30	60
3	24	72	216
4	19	76	304
5	10	50	250
TOTAL			

x _i	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
1	12	12	12
2	15	30	60
3	24	72	216
4	19	76	304
5	10	50	250
TOTAL	80	240	842

$$\bar{x} = \frac{240}{80} = 3$$

$$\sigma = \sqrt{\frac{842}{80} - 3^2} \approx 1,235$$

54

300848

3 Completa en tu cuaderno la tabla con las marcas de clase, y calcula la media y la desviación típica.

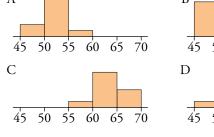
PESOS	PERSONAS	
50 a 58	6	
58 a 66	12	
66 a 74	21	
74 a 82	16	
82 a 90	5	

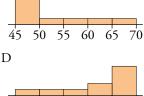
x _i	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
54	6	324	17 496
62	12	744	46 128
70	21	1 470	102 900
78	16	1 248	97 344
86	5	/(30	36,980

4216

60

TOTAL


$$\bar{x} = \frac{4216}{60} = 70,267$$


$$\sigma = \sqrt{\frac{300\,848}{30} - 70,267^2} \approx 8,76$$

♣ INTERPRETACIÓN CONJUNTA DE য় Y σ

Página 238

1 Las siguientes gráficas muestran los porcentajes de encestes de los jugadores de cuatro equipos. A partir de los datos de la tabla de la derecha, indica la media y la desviación típica correspondiente a cada equipo.

A → Equipo IV

 $C \rightarrow Equipo III$

 $B \rightarrow Equipo I$

 $D \rightarrow Equipo II$

EQUIPO	X	σ
I	52,5	7,1
II	62	6,9
III	63,5	3
IV	52	2,7

Página 239

2 En distintas tiendas de instrumentos musicales preguntamos el precio de ciertos modelos concretos de piano, flauta travesera y armónica. Los resultados obtenidos tienen las siguientes medias y desviaciones típicas:

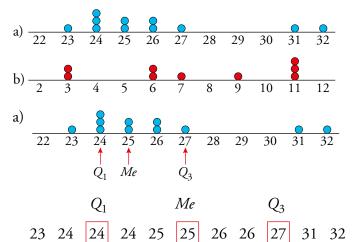
	PIANOS	FLAUTAS	ARMÓNICAS
MEDIA	943 €	132€	37 €
DESV. TÍPICA	148€	22€	12€

Compara la dispersión relativa de los precios de estos tres productos.

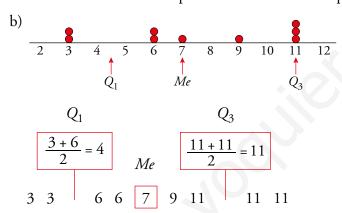
	PIANOS	FLAUTAS	ARMÓNICAS
MEDIA	943	132	37
DESV. TÍPICA	148	22	12
cv	0,157	0,167	0,324

$$CV_{PIANO} = \frac{148}{943} = 0,157 \rightarrow 15,7\%$$

$$CV_{\text{FLAUTAS}} = \frac{22}{132} = 0,167 \rightarrow 16,7\%$$


$$CV_{ARMÓNICAS} = \frac{12}{37} = 0,324 \rightarrow 32,4\%$$

Podemos apreciar que la variación en los pianos y las flautas es muy parecida. En cambio, la variación de las armónicas es mayor que las anteriores, de hecho, es aproximadamente el doble que en las flautas.


5 PARÁMETROS DE POSICIÓN: MEDIANA Y CUARTILES

Página 240

1 Calcula Q_1 , Me y Q_3 y sitúalos en cada una de las siguientes distribuciones representadas:

Los número marcados separan los datos en cuatro partes iguales.

2 En cada una de las distribuciones siguientes:

- a) Calcula Q_1 , Me y Q_3 .
- b) Representa los datos y sitúa en ellos Q_1 , $Me y Q_3$.

A: 0, 0, 2, 3, 4, 4, 4, 4, 5, 6, 7, 8, 9, 9, 10

B: 0, 1, 1, 2, 3, 4, 4, 7, 7, 7, 14, 17, 29, 35

C: 12, 13, 19, 25, 63, 85, 123, 132, 147

a) Q_1 Me Q_3 A: 0 0 2 3 4 4 4 4 5 6 7 8 9 9 10

Como la distribución tiene 15 elementos, la cuarta parte es 15:4=3,75.

$$Q_1 = 3$$
; $Me = 4$; $Q_3 = 8$

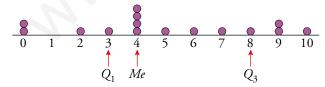
Me $Q_{1} \qquad \qquad Q_{3}$ B: 0 1 1 2 3 4 4 7 7 7 14 17 29 3

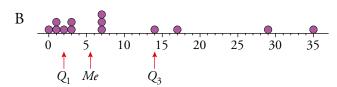
Como la distribución tiene 15 elementos, la cuarta parte es 14 : 4 = 3,5

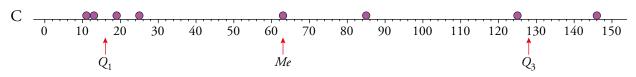
$$Q_1 = 2$$
 $Me = \frac{4+7}{2} = 5,5$

$$Q_3 = 14$$

 Q_1 Q_3 $\boxed{\frac{13+19}{2}=16}$ Me $\boxed{\frac{123+132}{2}=127,5}$ $C: 12 \ 13$ $\boxed{19 \ 25 \ 63 \ 85 \ 123}$ $\boxed{132 \ 147}$

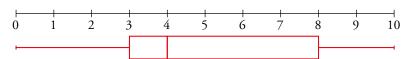

Como la distribución tiene 15 elementos, la cuarta es 9 : 4 = 2,25


$$Q_1 = 16$$

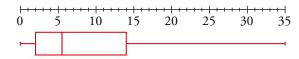

$$Me = 63$$

$$Q_3 = 127,5$$

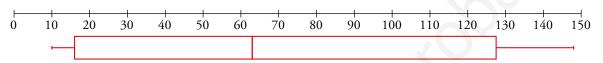
b) A



Página 241


3 Representa con un diagrama de caja y bigotes cada distribución de la actividad 2 de la página anterior.

Utiliza los valores de Q_1 , Me y Q_3 que hallaste en esa actividad.


A.
$$Q_1 = 3$$
, $Me = 4$ y $Q_3 = 8$

B.
$$Q_1 = 2$$
, $Me = 5.5$ y $Q_3 = 14$

C.
$$Q_1 = 16$$
, $Me = 63$ y $Q_3 = 127,5$

4 Representa mediante un diagrama de caja y bigotes los siguientes puntos conseguidos en la diana:

7 6 6 8 5

5 7 9 6 8

47586

7 5 6 6 7

5 6 6 5 8

67593

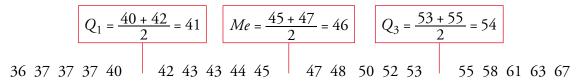
Los parámetros de posición son $\rightarrow Q_1$ = 5, Me = 6 y Q_3 = 8

6 DOBTENCIÓN DE \overline{x} y σ con la calculadora

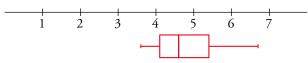
Página 242

1 Halla \bar{x} y σ con la calculadora en la distribución a) de la actividad 1 de la página 236.

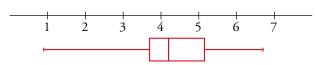
$$n = 50$$
; $\Sigma x = 104$; $\Sigma x^2 = 336$; $\bar{x} = 2,08$; $\sigma_x = 1,547126$


2 Halla con la calculadora $\bar{x} y \sigma$ en la distribución b) de la actividad 1 de la página 236.

$$n = 33$$
; $\Sigma x = 24$; $\Sigma x^2 = 48$; $\bar{x} = 0, 72$; $\sigma_x = 0,9620914$


Página 243

Hazlo tú


• Construye el diagrama de caja y bigotes para el colectivo reducido (los 20 adultos sin ninas ni ninos) y compáralo con el del grupo inicial.

• Sin los 5 miembros más jóvenes, el diagrama de caja y bigotes es el siguiente:

Con los 5 niños:

Haciendo una comparación de este diagrama y el del problema resuelto anterior podemos observar que las cajas son muy parecidas, lo que varía es la longitud del bigote izquierdo, ya que hemos suprimido las edades más jóvenes.

EJERCICIOS Y PROBLEMAS

Página 244

Practica

Parámetros de centralización y dispersión

- Calcula los parámetros media, mediana, moda, recorrido, varianza, desviación típica y coeficiente de variación en cada caso:
 - a) 6, 3, 4, 2, 5, 5, 6, 4, 5, 6, 8, 9, 6, 7, 7, 6, 4, 6, 10, 6
 - b) 11, 12, 12, 11, 10, 13, 14, 15, 14, 12
 - c) 165, 167, 172, 168, 164, 158, 160, 167, 159, 162

Calculamos la tabla de frecuencias para facilitar el cálculo:

a) 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 8, 9, 7, 7, 10

Xi	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
2	1	2	4
3	1	3	9
4	3	12	48
5	3	15	75
6	7	42	252
7	2	14	98
8	1	8	64
9	1	9	81
10	1	10	100
TOTAL	20	115	731

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{115}{20} = 5,75 \qquad \text{Recorrido} = 8$$

$$Me = \frac{6+6}{2} = 6$$

$$Mo = 6$$

$$\text{Varianza} = \frac{\sum f_i x_i^2}{\sum f_i} - \bar{x}^2 = \frac{731}{20} - 5,75^2 = 3,49$$

$$\sigma = \sqrt{\frac{\sum f_i x_i^2}{\sum f_i}} - \bar{x}^2 = \sqrt{\frac{731}{20}} - 5,75^2 = 1,87$$

$$CV = \frac{\sigma}{\overline{x}} = \frac{1,87}{5,75} = 0,3248 \rightarrow 32,48\%$$

b) 10, 11, 11, 12, 12, 12, 13, 14, 14, 15

Xi	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$	
10	1	10	100	
11	2	22	242	
12	3	36	432	
13	1	13	169	
14	2	28	392	
15	1	15	225	
TOTAL	10	124	1 560	

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{124}{10} = 12,4$$
 Recorrido = 5
$$Me = \frac{12 + 12}{2} = 12$$

$$Me = \frac{12 + 12}{2} = 1$$

$$Mo = 12$$

Varianza =
$$\frac{\sum f_i x_i^2}{\sum f_i} - \overline{x}^2 = \frac{1560}{10} - 12, 4^2 = 2,24$$

$$\sigma = \sqrt{\frac{\sum f_i x_i^2}{\sum f_i} - \overline{x}^2} = \sqrt{\frac{1560}{10} - 12, 4^2} = 1,50$$

$$CV = \frac{\sigma}{\overline{x}} = \frac{1,50}{12,4} = 0,1207 \rightarrow 12,07\%$$

c) 158, 159, 160, 162, 164, 165, 167, 167, 168, 172

X _i	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
158	1	158	24964
159	1	159	25 281
160	1	160	25 600
162	1	162	26 244
164	1	164	26896
165	1	165	27 225
167	2	334	55778
168	1	168	28 224
172	1	172	29 584
TOTAL	10	1 642	269796

2 El número de calzado que llevan los alumnos y las alumnas de una clase son los siguientes:

- a) Haz una tabla de frecuencias con los siguientes intervalos: 35,5 38,5 40,5 42,5 44,5 46,5.
- b) Halla la media, la desviación típica y el CV.
- a) Tabla de frecuencias:

INTERVALO	X _i	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
35,5-38,5	37	8	296	10952
38,5-40,5	39,5	8	316	12482
40,5-42,5	41,5	6	249	10333,5
42,5-44,5	43,5	5	217,5	9 461,25
44,5-46,5	45,5	3	136,5	6210,75
	TOTALES	30	1215	49 439,5

b)
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{1215}{30} = 40,5$$

$$\sigma = \sqrt{\frac{\sum f_i x_i^2}{\sum f_i} - \bar{x}^2} = \sqrt{\frac{49439.5}{30} - 40,5^2} = 2,78$$

$$CV = \frac{\sigma}{\bar{x}} = \frac{2,78}{40,5} = 0,0687 \rightarrow 6,87\%$$

3 Una fábrica ha contado el número de vasos que se le rompen en cada cajón de camino a la tienda. Estos son los resultados:

N.º DE VASOS ROTOS	0	1	2	3	4	5	6
N.° DE CAJONES	51	23	11	8	4	2	1

- a) Calcula la media, la desviación típica y el coeficiente de variación.
- b) ¿Cuál es la moda?
- c) Comprueba los resultados con la calculadora.

X _i	fi	$f_i \cdot x_i$	$f_i \cdot x_i^2$
0	51	0	0
1	23	23	23
2	11	22	44
3	8	24	72
4	4	16	64
5	2	10	50
6	1	6	36
TOTAL	100	101	289

a)
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{101}{100} = 1,01$$

$$\sigma = \sqrt{\frac{\sum f_i x_i^2}{\sum f_i} - \bar{x}^2} = \sqrt{\frac{289}{100} - 1,01^2} = 1,37$$

$$CV = \frac{\sigma}{\bar{x}} = \frac{1,37}{1,01} = 1,3539 \rightarrow 135,39\%$$

- b) $M_0 = 0$
- c) Introducimos los datos en la calculadora:

$$2 \times 15 \text{ DATA} \rightarrow \boxed{2}$$

$$3 \times 7$$
 DATA \rightarrow 3

$$6 \times 1$$
 DATA \rightarrow $\boxed{}$

Obtenemos los resultados:

$$_{\scriptscriptstyle n} \rightarrow$$

$$\Sigma_{x} \rightarrow \boxed{101}$$

$$\Sigma x^2 \rightarrow 289$$

$$\bar{x} \rightarrow \boxed{1.01}$$

$$\sigma_n \rightarrow 1.367443$$

4 La siguiente tabla muestra los lanzamientos de jabalina que se han realizado en la clasificación para los juegos olímpicos:

DISTANCIAS (m)	N.° DE LANZADORES
54 a 58	4
58 a 62	11
62 a 66	24
66 a 70	9
70 a 74	2

- a) Haz una tabla con las marcas de clase y las frecuencias.
- b) Calcula la media, la desviación típica y el coeficiente de variación.
- c) Comprueba los resultados con la calculadora.
- a) Tabla de frecuencias:

INTERVALO	x _i	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
54-58	56	4	224	12544
58-62	60	11	660	39600
62-66	64	24	1 536	98 304
66-70	68	9	612	41616
70-74	72	2	144	10368
	TOTALES	50	3 176	202432

b)
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{3176}{50} = 63,52$$

$$\sigma = \sqrt{\frac{\sum f_i x_i^2}{\sum f_i} - \bar{x}^2} = \sqrt{\frac{202432}{50} - 63,52^2} = 3,72$$

$$CV = \frac{\sigma}{\bar{x}} = \frac{3,72}{63,52} = 0,0586 \rightarrow 5,86\%$$

c) Introducimos los datos en la calculadora:

$$56 \times 4 \text{ DATA} \rightarrow \boxed{58}$$

$$60 \times 14 \text{ DATA} \rightarrow \boxed{80}$$

$$64 \times 15$$
 DATA \rightarrow 84

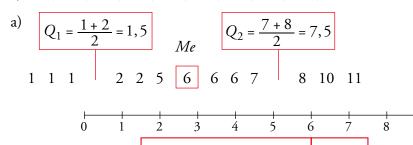
$$68 \times 7 \longrightarrow \boxed{58}$$

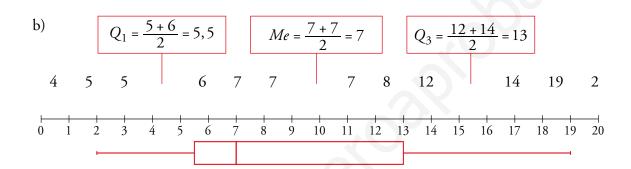
$$72 \times 4$$
 DATA \rightarrow 12

Obtenemos los resultados:

$$^{\circ}$$
 \rightarrow $\boxed{50}$

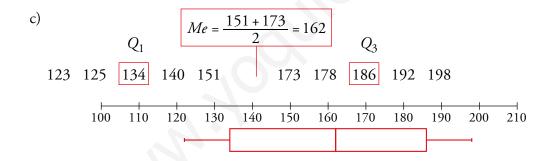
$$\Sigma_x \rightarrow \boxed{3176}$$

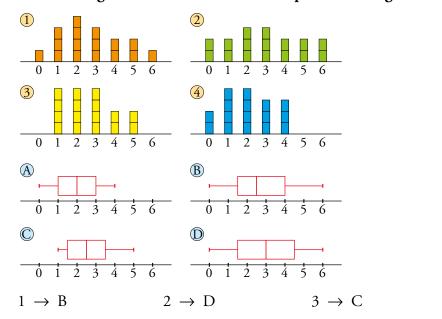

$$\Sigma x^2 \rightarrow \boxed{202432}$$


$$\bar{x} \rightarrow \boxed{63.52}$$

$$\sigma_n \rightarrow 3.721505$$

Parámetros de posición y diagramas de caja


- 5 Halla la mediana y los cuartiles de cada distribución y representa su correspondiente diagrama de caja y bigotes:
 - a) 1, 1, 1, 2, 2, 5, 6, 6, 6, 7, 8 10, 11
 - b) 4, 5, 5, 6, 7, 7, 7, 8, 12, 14, 19, 22
 - c) 123, 125, 134, 140, 151, 173, 178, 186, 192, 198



9

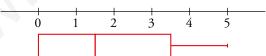
10

6 Asocia cada gráfico de barras con su correspondiente diagrama de caja y bigotes:

8 Esta tabla muestra la distribución del número de asignaturas suspendidas en una evaluación por los estudiantes de una clase:

N.° DE ASIG. SUSP.	0	1	2	3	4	5
N.° DE ESTUDIANTES	10	4	5	2	4	3

Representa esta distribución mediante un diagrama de caja y bigotes.


En total son 28 estudiantes preguntados.

La mediana estará entre el dato de la posición 14 y el 15, es decir, $Me = \frac{1+2}{2} = 1,5$

Quedarán 14 datos a la derecha y 14 datos a la izquierda de la mediana.

El primer cuartil estará entre los datos del puesto 7 y el puesto 8, es decir, $Q_1 = \frac{0+0}{2} = 0$

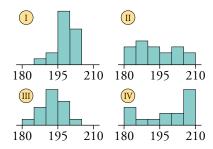
El tercer cuartil estará entre los datos del puesto 21 y el puesto 22, es decir, $Q_3 = \frac{3+4}{2} = 3.5$

Resuelve problemas

- 9 Se ha hecho un mismo examen en dos grupos, A y B, de 30 alumnos y alumnas cada uno. Sus medias y sus desviaciones típicas son: $\bar{x}_A = 6$, $\sigma_A = 1$, $\bar{x}_B = 6$, $\sigma_B = 3$.
 - a) Asigna una de estas gráficas a A y otra a B.

- b) En una de las clases hay 11 suspensos y 4 sobresalientes, mientras que en la otra hay 5 suspensos y 1 sobresaliente. ¿Cuál es A y cuál es B?
- c) Si Laura necesita sacar sobresaliente y Miguel se conforma con aprobar, ¿qué clase te parece más adecuada para cada uno de ellos?
- a) La segunda gráfica la descartamos porque la media sería 5.

$$\overline{x}_A = 6$$
 y $\sigma_A = 1 \rightarrow 1^a$ gráfica



$$\overline{x}_B = 6$$
 y $\sigma_B = 3 \rightarrow 3^a$ gráfica

- b) A corresponde con la clase de los 5 suspensos y el sobresaliente.B corresponde con la clase de los 11 suspensos y los 4 sobresalientes.
- c) La clase A será más adecuada para Laura, y la clase B, para Miguel.

10 Estas cuatro gráficas corresponden a las estaturas de los jugadores de cuatro equipos de baloncesto, A, B, C y D, cuyos parámetros aparecen en la tabla. ¿Cuál es la gráfica de cada equipo?

EQUIPO	X	σ
A	198,5	9,7
В	198,1	3,9
С	193	4,6
D	193,4	8,1

Halla el CV de cada equipo y ordénalos de menos a más regulares.

Los equipos I y IV tienen medias superiores a 195, y los equipos II y III, inferiores.

Además, los jugadores de IV tienen estaturas más extremas que I. Lo mismo ocurre con III que tiene estaturas más extremas que II.

Así, podemos relacionar:

A
$$\rightarrow$$
 IV B \rightarrow I C \rightarrow III

$$CV_{A} = \frac{\sigma}{\overline{x}} = \frac{9.7}{198.5} = 0,0489 \rightarrow 4,89\%$$

$$CV_{B} = \frac{\sigma}{\overline{x}} = \frac{3.9}{198.1} = 0,0197 \rightarrow 1,97\%$$

$$CV_{C} = \frac{\sigma}{\overline{x}} = \frac{4.6}{193} = 0,0238 \rightarrow 2,38\%$$

$$CV_{A} = \frac{\sigma}{\overline{x}} = \frac{8.1}{193.4} = 0,0419 \rightarrow 4,19\%$$

Los ordenamos de menos a más regulares:

11 Elena, una jugadora de baloncesto, tiene una media de 17 puntos por partido y una desviación típica de 9. Su compañera, Marta, tiene una media de 20 puntos y una desviación típica de 3 puntos.

Para el próximo partido, el entrenador necesita una jugadora que intente conseguir 30 o más puntos. ¿A cuál de las dos debe seleccionar? ¿Por qué?

El entrenador necesita que la jugadora elegida haga 30 puntos.

Elena tiene $\bar{x} = 17$ y $\sigma = 9$ y pasa de los 30 puntos con 1,5 desviaciones típicas. Es decir, $\bar{x} + 1,5\sigma = 17 + 1,5 \cdot 9 = 30,5$.

Marta tiene $\bar{x} = 20$ y $\sigma = 3$ y para tener al menos 30 puntos, necesita más de 3 desviaciones típicas. Es decir, $\bar{x} + 3\sigma = 20 + 3 \cdot 3 = 29$.

Por tanto, el entrenador debe seleccionar a Elena.

12 Lidia y Marcos juegan varias veces a acertar, en un minuto, el máximo número de palabras dada su definición. Estos son los resultados:

LIDIA	14	8	15	9	7	13	12	15
MARCOS	11	9	10	10	12	11	6	9

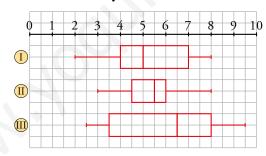
- a) Halla la media y la desviación típica de cada uno.
- b) Calcula sus CV y di quién es más regular.
- a) Lidia:

$$\bar{x} = \frac{14 + 8 + 15 + 9 + 7 + 13 + 12 + 15}{8} \approx 11,63$$

$$\sigma = \sqrt{\frac{14^2 + 8^2 + 15^2 + 9^2 + 7^2 + 13^2 + 12^2 + 15^2}{8} - 11,63^2} \approx 2,98$$

Marcos:

$$\bar{x} = \frac{11+9+10+10+12+11+6+9}{8} = 9,75$$


$$\sigma = \sqrt{\frac{11^2+9^2+10^2+10^2+12^2+11^2+6^2+9^2}{8}} - 9,75^2 \approx 2,94$$

b) Lidia:
$$CV = \frac{2,98}{11,63} = 0.26 \rightarrow 26\%$$

Marcos:
$$CV = \frac{2,94}{9,75} = 0,30 \rightarrow 30\%$$

Lidia es un poco más regular.

13 a) Compara estas distribuciones de notas obtenidas por tres grupos de alumnas y alumnos indicando cuáles son la mediana y los cuartiles en cada una:

- b) En la evaluación se hicieron estos comentarios:
 - I. Aprobó el 50 % de la clase.
 - II. Las notas son muy parecidas.
 - III. Un cuarto de la clase tiene notas superiores a 7.
 - IV. Es la mejor clase, pero con la mayor dispersión.

Indica a qué grupo corresponde cada comentario.

a) i.
$$Q_1 = 4$$

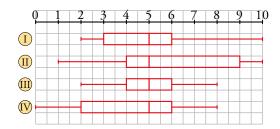
$$Me = 5$$

$$Q_3 = 7$$

II.
$$Q_1 = 4.5$$

$$Me = 5.5$$

$$Q_3 = 6$$


III.
$$Q_1 = 3.5$$

$$Me = 6.5$$

$$Q_3 = 8$$

b) 1. Grupo

14 Estos son los diagramas de caja de las notas en matemáticas de cuatro clases de 20 estudiantes:

- a) Di, en cada una de ellas, los valores menor y mayor así como Q_1 , Me y Q_3 .
- b) Los parámetros son, no respectivamente:

	A	В	С	D
Χ	4	6	5	5
σ	2,3	3,1	2,5	1,3

Asocia los parámetros con su clase.

c) Las 20 notas de la clase I son:

2 2 2 2 3 3 4 4 4 5 5 5 5 6 6 7 8 8 10 10

Comprueba que responden a su diagrama de caja.

Inventa tú 20 valores que respondan a cada uno de los diagramas II, III y IV.

- d) Calcula \bar{x} y σ en las distribuciones que has inventado en el apartado anterior y compáralos con los que se dan en la tabla del apartado b).
- e) Halla el coeficiente de variación de cada distribución del apartado b) y determina cuál es más regular.

a) I.
$$Min = 2$$
 $Me = 5$ $Q_3 = 6$ $Max = 10$

II.
$$Min = 1$$
 $Me = 5$ $Q_3 = 9$ $Max = 10$

III.
$$Min = 2$$
 $Me = 5$ $Q_3 = 6$ $Max = 8$

IV.
$$Min = 0$$
 $Me = 5$ $Q_3 = 6$ $Max = 8$

b) A tiene la media más baja: A \rightarrow IV

B tiene la media más alta: B \rightarrow II

C parece centrada en 5 con dispersión alta: $C \rightarrow I$

D tiene dispersión baja y la media y la mediana coinciden: D \rightarrow III

c) Para que los datos respondan al diagrama I habría que cambiar el 7 por un 6.

Respuesta abierta. Por ejemplo:

$$II \rightarrow 1 \ 2 \ 3 \ 3 \ 4 \ 4 \ 4 \ 4 \ 5 \ 5 \ 5 \ 7 \ 8 \ 9 \ 9 \ 9 \ 10 \ 10$$

$$III \rightarrow 2 \ 2 \ 2 \ 3 \ 4 \ 4 \ 4 \ 5 \ 5 \ 5 \ 5 \ 5 \ 6 \ 6 \ 6 \ 7 \ 7 \ 8 \ 8$$

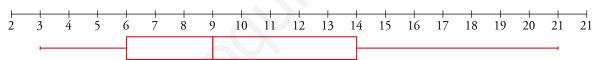
$$IV \rightarrow 0 \ 1 \ 1 \ 2 \ 2 \ 2 \ 3 \ 4 \ 4 \ 5 \ 5 \ 5 \ 6 \ 6 \ 6 \ 6 \ 7 \ 7 \ 7 \ 8$$

- d) Respuesta abierta.
- e) Respuesta abierta.

Página 246

- 15 Para hallar la nota de una asignatura, el segundo examen vale el doble que el primero, y el tercero, el triple que el primero.
 - a) ¿Cuál es la nota final de una alumna que sacó un 5, un 6 y un 4?
 - b) ¿Y si esas notas son el 10 %, el 40 % y el 50 %?

a)
$$\frac{1 \cdot 5 + 2 \cdot 6 + 3 \cdot 4}{1 + 2 + 3} = \frac{29}{6} = 4,83$$


b)
$$\frac{10 \cdot 5 + 40 \cdot 6 + 50 \cdot 4}{10 + 40 + 50} = \frac{490}{100} = 4,9$$

16 Sabemos que, en una clase, la calificación media de un examen ha sido 5, y la desviación típica, 1,5. En esa misma clase, para otro examen, la calificación media ha sido, también, 5 y la desviación típica, 1.

Si alguien ha obtenido un 8 en el primer examen y un 7,5 en el segundo, ¿qué nota te parece más meritoria? ¿Por qué?

El coeficiente de variación en el primer examen es del 30 %, y en el segundo, del 20 %. Así, en el segundo examen hay menos personas que hayan sacado notas muy por encima de la media y, por lo tanto, el 7,5 de este alumno es más meritorio.

- 17 Conocemos el número de días al mes que ha llovido este año en una cierta región. Los valores de los cuartiles son 6, 9 y 14. El mes que más llovió fue marzo con 21 días y sabemos que el rango de la distribución es 18.
 - a) Construye el diagrama de caja y bigotes.
 - b) ¿Crees que es una región lluviosa? Justifica la respuesta.

Observando el diagrama de caja y bigotes sí podemos deducir que es una región lluviosa.

18 Estas son las horas de estudio semanal de un grupo de alumnas y alumnos:

14	9	9	20	18	12	14	6	14	8
15	10	18	20	2	7	18	8	12	10
20	16	18	15	24	10	12	25	24	17
10	4	8	20	10	12	16	5	4	13

- a) Construye una tabla de frecuencias con los siguientes intervalos: 1,5 6,5 11,5 16,5 21,5 26,5.
- b) Calcula la media y la desviación típica.

a)	INTERVALO	FRECUENCIA
	1,5 - 6,5	5
	6,5 - 11,5	11
	11,5 - 16,5	12
	16,5 - 21,5	9
	21,5 - 26,5	3

b)	INTERVALO	X _i	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
	1,5 - 6,5	4	5	20	80
	6,5 - 11,5	9	11	99	891
	11,5 - 16,5	14	12	168	2352
	16,5 - 21,5	19	9	171	3 2 4 9
	21,5 - 26,5	24	3	72	1728
			40	530	8300

$$\bar{x} = \frac{530}{40} = 13,25 \text{ h}$$

$$\sigma = \sqrt{\frac{8300}{40} - (13,25)^2} = 5,6513$$

19 Se ha puesto un examen a las dos clases de 3.º ESO de un centro escolar. Las notas medias obtenidas son 6,2 en 3.º A y 4 en 3.º B.

Halla la nota media de los 50 estudiantes de 3.º ESO sabiendo que en 3.º A solo hay 15.

3.° A
$$\rightarrow \bar{x}_A = 6.2; n_A = 15$$

3.° B
$$\rightarrow \bar{x}_B = 4$$
; $n_B = 50 - 15 = 35$

Hallamos la nota media de todo 3.º:

$$\bar{x} = \frac{6.2 \cdot 15 + 4 \cdot 35}{50} = \frac{233}{50} = 4.66$$

20 En una clase, estas son las notas de un examen:

NOTAS	1	2	3	4	5	6	7	8	9	10
N.º ALUMNOS	4	3	2	1	7	3	2	8	3	2

Calcula las notas medias de la clase (\bar{x}) , de los aprobados (\bar{x}_A) y de los suspensos (\bar{x}_B) . Comprueba si haciendo la media de \bar{x}_A y \bar{x}_B obtienes \bar{x} .

$$\bar{x} = \frac{198}{35} \approx 5,657$$

$$\bar{x}_{A} = \frac{178}{25} = 7,12$$

$$\bar{x}_{\rm B} = \frac{20}{10} = 2$$

Haciendo la media de $\bar{x}_{\rm A}$ y $\bar{x}_{\rm B}$ no se puede hallar \bar{x} . Observamos que:

Si
$$\bar{x}_A = \frac{a}{b}$$
 y $\bar{x}_B = \frac{c}{d}$, $\bar{x} = \frac{a+c}{b+d}$

$$\frac{\overline{x}_{A} + \overline{x}_{B}}{2} \neq \frac{a+c}{b+d}$$

22 En un test de inteligencia realizado a 200 personas, se han obtenido los siguientes resultados:

PUNTUACIÓN	30-40	40-50	50-60	60-70	70-80	80-90
N.° PERSONAS	6	18	76	70	22	8

- a) Calcula la media y la desviación típica.
- b) ¿Qué porcentaje de inividuos tiene una inteligencia superior a $\bar{x} + 2\sigma$? ¿Y cuántos inferior a $\bar{x} 2\sigma$? Haz una estimación razonada.

a)	INTERVALO	Χį	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
	30 - 40	35	6	210	7350
	40 - 50	45	18	810	36450
	50 - 60	55	76	4180	229 900
	60 - 70	65	70	4550	295750
	70 - 80	75	22	1650	123750
	80 - 90	85	8	680	57 800
			200	12080	751 000

$$\bar{x} = \frac{12080}{200} = 60.4; \ \sigma = \sqrt{\frac{751000}{200} - (60.4)^2} = 10.336$$

b) Como $\bar{x} + 2\sigma = 60.4 + 2 \cdot 10.336 \approx 81 \, \text{y}$ en el intervalo 80 - 90 hay 8 personas, estimamos que en el intervalo 81 - 90 hay, aproximadamente, 7 personas. Como en total hay 200 personas, el porcentaje de individuos con una inteligencia superior a $\bar{x} + 2\sigma$ es $\frac{7}{200} = 0.35 \approx 35 \, \%$.

Por otro lado, como $\bar{x}-2\sigma=60.4-2\cdot 10.336\approx 39.7$, y en el intervalo 30 - 40 hay 6 personas, estimamos que en el intervalo 30 - 39.7 hay, aproximadamente, 6 personas. Como en total hay 200 personas, el porcentaje de individuos con una inteligencia inferior a

$$\bar{x} - 2\sigma$$
 es $\frac{6}{200} = 0.3 \approx 3\%$.

Los dos porcentajes deberían ser aproximadamente iguales.

23 ¿Qué les ocurre a la x^- y a la σ de una distribución si a todos sus datos les sumamos un mismo número?

¿Y si los multiplicamos por el mismo número?

Comprueba tus conjeturas con estos datos:

• Si a cada dato le sumamos un mismo número, *a*, entonces la media aumenta *a* unidades pero la desviación típica no varía.

Datos
$$\rightarrow x'_i = x_i + a$$

Parámetros
$$\rightarrow \bar{x}' = \bar{x} + a$$
; $\sigma' = \sigma$

• Si cada dato se multiplica por k, la media y la desviación típica se multiplican por k:

Datos
$$\rightarrow x_i^{"} = k \cdot x_i$$

Parámetros
$$\rightarrow \bar{x}'' = k \cdot \bar{x}; \ \sigma'' = \sigma$$

Comprobación:

Los parámetros de la distribución son $\bar{x} \approx 4,55 \text{ y } \sigma \approx 1,42.$

Si sumamos 3 a cada dato, obtenemos $\bar{x} \approx 7.55$ y $\sigma \approx 1.42$.

Si multiplicamos por 2 cada dato, obtenemos $\bar{x} \approx 9.1$ y $\sigma \approx 2.84$.

AUTOEVALUACIÓN

Página 247

- 1 Halla la media, la mediana, la desviación típica y el coeficiente de variación de cada una de estas distribuciones y determina cuál es más dispersa:
 - a) 6, 9, 1, 4, 8, 2, 3, 4, 4, 9
 - b) 120, 95, 87, 111, 116, 82, 121, 92, 76
 - c) 987, 1010, 1004, 995, 998, 1001, 999, 982
 - a) Ordenamos primero los datos: 1 2 3 4 4 6 8 9 9

MEDIA:
$$\overline{x} = \frac{1+2+3+4\cdot3+6+8+9\cdot2}{10} = 5$$

MEDIANA = 4

VARIANZA:
$$\frac{1^2 + 2^2 + 3^2 + 4^2 \cdot 3 + 6^2 + 8^2 + 9^2 \cdot 2}{10} - 5^2 = \frac{324}{10} - 25 = 7,4$$

desviación típica: $\sigma = \sqrt{7,4} \approx 2,72$

coeficiente de variación:
$$CV = \frac{2,72}{5} = 0,544$$

b) Ordenamos los datos: 76 82 87 92 95 111 116 120 121

MEDIA:
$$\overline{x} = \frac{76 + 82 + 87 + 92 + 95 + 111 + 116 + 120 + 121}{9} = 100$$

MEDIANA = 95

Varianza:
$$\frac{76^2 + 82^2 + 87^2 + 92^2 + 95^2 + 111^2 + 116^2 + 120^2 + 121^2}{9} = -100^2 = 264$$

desviación típica: $\sigma = \sqrt{264} \approx 16,25$

Coeficiente de variación:
$$CV = \frac{16,25}{100} = 0,1625$$

c) Ordenamos los datos: 982 987 995 998 999 1001 1004 1010

MEDIA:
$$\overline{x} = \frac{982 + 987 + 995 + 998 + 999 + 1001 + 1004 + 1010}{8} = 997$$

MEDIANA =
$$\frac{998 + 999}{2}$$
 = 998,5

VARIANZA:
$$\frac{982^2 + 987^2 + 995^2 + 998^2 + 999^2 + 1001^2 + 1004^2 + 1010^2}{8} = -997^2 = 71$$

desviación típica: $\sigma = \sqrt{71} \approx 8,43$

coeficiente de variación:
$$CV = \frac{8,43}{997} = 0,0085$$

La distribución más dispersa es la a).

- 2 Calcula \bar{x} , σ y CV de las siguientes distribuciones:
 - a) Número de días que han ido a la biblioteca los estudiantes de un curso:

N.° DE DÍAS	FRECUENCIA
0	6
1	7
2	8
3	5
4	2
5	2

b) Tiempo, en minutos, que pasaron en la sala de espera los pacientes de un médico cierto día:

TIEMPO (min)	FRECUENCIA
De 1 a 9	4
De 9 a 17	5
De 17 a 25	8
De 25 a 33	7
De 33 a 41	4
De 41 a 49	2

a)	Xi	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
	0	6	0	0
	1	7	7	7
	2	8	16	32
	3	5	15	45
	4	2	8	32
	5	2	10	50
		30	56	166

MEDIA:
$$\bar{x} = \frac{56}{30} \approx 1,87$$

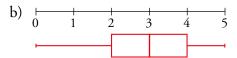
desviación típica:
$$\sigma = \sqrt{\frac{166}{30} - 1,87^2} \approx 1,43$$

coeficiente de variación: $CV = \frac{\sigma}{\overline{x}} = \frac{1,43}{1,87} \approx 0,7647$

b)	INTERVALO	x _i	f_i	$f_i \cdot x_i$	$f_i \cdot x_i^2$
	0 - 10	5	6	30	150
	10 - 20	15	9	135	2025
	20 - 30	25	8	200	5 000
	30 - 40	35	5	175	6125
	40 - 50	45	2	90	4050
			30	630	17350

MEDIA:
$$\bar{x} = \frac{630}{30} \approx 21$$

desviación típica:
$$\sigma = \sqrt{\frac{17350}{30} - 21^2} \approx 11,72$$


coeficiente de variación:
$$CV = \frac{\sigma}{\overline{x}} = \frac{11,72}{21} \approx 0,56$$

3 Las notas obtenidas por los estudiantes de una clase en un examen con 5 preguntas han sido:


3	3	2	4	5	4	1	3	3	2
3	2	4	4	3	1	2	0	5	3

- a) Calcula la mediana y los cuartiles.
- b) Dibuja el correspondiente diagrama de caja.

a)
$$Me = 3$$
, $Q_1 = 2$ y $Q_3 = 4$

4 Las estaturas de los componentes de tres equipos escolares de baloncesto, A, B y C, se distribuyen según las siguientes gráficas:

Los parámetros correspondientes a cada uno son:

	Α	В	С
X	177,8	176,8	174,6
σ	6,4	3,2	4,5

Indica a qué equipo corresponde cada gráfica.

La gráfica I corresponde al equipo B, ya que su medida debe estar entre 175 y 180 y su desviación media es la más pequeña.

La gráfica II corresponde al equipo C, ya que su media debe estar entre 170 y 175 y su desviación media está entre las de los otros dos equipos.

La gráfica III corresponde al equipo A, ya que su media está más cercana a 180 y su desviación media es la más grande.

- 5 He estudiado esta semana: el lunes, 3 h; el martes, 2 h; el miércoles, 2,5 h; el jueves, 5 h; el viernes, 2 h, y el sábado, 3,5 h.
 - a) ¿Cuánto tengo que estudiar el domingo para mantener la media? ¿Y para la mediana?
 - b) ¿Cuánto debo estudiar para que la media sea 5 h?

MEDIA:
$$\overline{x} = \frac{2+2+2,5+3+3,5+5}{6} = 3 \text{ h}$$

mediana = 2,75 h

Para mantener la media, el domingo tengo que estudiar 3 h. Y para mantener la mediana, 2,75 h.

b)
$$\frac{2+2+2,5+3+3,5+5+x}{7} = 5 \rightarrow 18+x=35 \rightarrow x=17$$

Tengo que estudiar 17 h.

CURIOSIDADES MATEMÁTICAS

Página 247

Medias semanales

 Virginia es vendedora ambulante seis días a la semana. Ayer, viernes, calculó que durante esta semana había conseguido una ganancia media de 48 € diarios. Sin embargo, al hacer la misma cuenta hoy, sábado, resulta una media de 60 € diarios. ¿Cuánto ha ganado hoy?

• La media que calculó el viernes fue: $\bar{x} = 48 = \frac{\sum x_i}{5} \rightarrow \sum x_i = 240$.

La media de hoy, sábado, es:
$$\bar{x} = 60 = \frac{\sum x_i}{6} \rightarrow \sum x_i = 360$$
.

Por lo tanto, Virginia ha ganado hoy 360 – 240 = 120 €