PROBLEMA 1.- Al calentar el gas NOF se disocia según la reacción: NOF (g) \Rightarrow NO (g) $+\frac{1}{2}$ F₂ (g)

En un recipiente de 1 litro se introducen inicialmente 2,45 g de NOF, se calienta a 300 °C y cuando se alcanza el equilibrio la presión total es de 2,57 atm.

- a. Calcula el grado de disociación del NOF.
- b. Calcula la presión parcial del flúor en el equilibrio.

Solución:

a) Los moles de NOF que se introducen en el reactor son:

$$n = \frac{a (gramos)}{M (NOF)} = \frac{2,45 g}{49 g \cdot mol^{-1}} = 0,05 moles.$$

Llamando "x" a los moles que se descomponen de NOF, los moles al inicio y en el equilibrio de las distintas especies son:

NOF (g)
$$\Rightarrow$$
 NO (g) + $\frac{1}{2}$ F₂ (g).
0,05 0 0
0,05 - x x 0,5x

Moles iniciales: Moles en el equilibrio:

El número total de moles en el equilibrio es: $n_t = 0.05 - x + x + 0.5x = 0.05 + 0.5x$, que llevado a la ecuación de estado de los gases ideales permite calcular x:

$$P \cdot V = n \cdot R \cdot T$$
 $\Rightarrow n = \frac{P \cdot V}{R \cdot T}$ $\Rightarrow 0.5x = \frac{2.57 \text{ atm} \cdot 1 \text{ L}}{0.082 \text{ atm} \cdot L \cdot mol^{-1} \cdot K^{-1} \cdot 573 \text{ K}} - 0.05 = 0.0047 \text{ moles, de}$

donde se deduce que el valor de x es: $x = \frac{0,0047 \text{ moles}}{0,5} = 0,0094 \text{ moles}$

Luego, los moles de cada especie en el equilibrio son:

0.05 - 0.0094 = 0.0406 moles NOF; 0.0094 moles NO y $0.5 \cdot 0.0094 = 0.0047$ moles F₂.

El grado de disociación, expresado en tanto por ciento, es el cociente entre los moles de NOF disociado y el inicial multiplicado por 100, es decir, $\alpha = \frac{0,0094}{0.05} \cdot 100 = 18,8 \%$.

b) Llevando los moles de flúor, F₂, en el equilibrio a la ecuación de estado de los gases ideales, despejando la presión, sustituyendo variables por valores y operando se obtiene su presión parcial en el equilibrio:

$$P \cdot V = n \cdot R \cdot T \implies P_{F_2} = \frac{n_{F_2} \cdot R \cdot T}{V} = \frac{0,0047 \ moles \cdot 0,082 \ atm \cdot L \cdot mol^{-1} \cdot K^{-1} \cdot 573 \ K}{1 \ L} = 0,221 atm;$$

Resultado: a)
$$\alpha = 18.8 \%$$
; b) $P_{F_{\gamma}} = 0.221$ atm.

PROBLEMA 2.- El fluoruro de bario BaF_2 se caracteriza por ser muy poco soluble en agua, con un Kps que vale $1,84 \cdot 10^{-7}$. Calcula la solubilidad del BaF_2 en $g \cdot L^{-1}$:

- a. En agua pura.
- b. En una disolución acuosa 1 M de NaF.

Solución:

a) La ionización del BaF₂ en disolución acuosa es: BaF₂ \leftrightarrows Ba²⁺ + 2 F⁻.

De la estequiometría del equilibrio de solubilidad se deduce que, si la solubilidad de la sal en disolución es S, en moles \cdot L^{-1} , la solubilidad de los iones Ba^{2+} es S, y la de los iones F^- es $2 \cdot S$, de donde se deduce que la solubilidad de la sal:

$$K_{ps} = S \cdot (2 \cdot S)^2 = 4 \cdot S^3 \implies S = \sqrt[3]{\frac{P_s}{4}} = \sqrt[3]{\frac{1,84 \cdot 10^{-7}}{4}} = 3,58 \cdot 10^{-3} \text{ moles } \cdot L^{-1}, \text{ y pasando los moles a}$$

gramos se obtiene la solubilidad de la sal en la unidad pedida.

$$3,58 \cdot 10^{-3}$$
 moles $\cdot L^{-1} \cdot 1 \frac{175 \text{ g}}{1 \text{ mol}} = 0,6265 \text{ g} \cdot L^{-1}$.

b) La sal soluble en agua NaF se encuentra totalmente disociada, por lo que la concentración de iones F en la disolución corresponde, exclusivamente, a la de esta sal.

En el equilibrio de ionización anterior de la sal poco soluble BaF_2 , la solubilidad del ión Ba^{2+} es S, y la del ión $F^ 2 \cdot S$, y en la nueva disolución que se forma, la solubilidad del ión F^- es $1+2 \cdot S$ mol \cdot L^{-1} por ser S despreciable debido a su pequeñísimo valor.

Sustituyendo estos valores en la constante del producto de solubilidad y operando, sale para S el

valor:
$$P_{ps} = S \cdot (2 \cdot 1)^2 \implies S = \frac{P_s}{(2 \cdot 1)^2} = \frac{1,84 \cdot 10^{-7}}{4} = 4,6 \cdot 10^{-8} \text{ moles } \cdot L^{-1}, \text{ que expresada en la}$$

unidad propuesta es: $4.6 \cdot 10^{-8}$ moles $\cdot L^{-1} \cdot \frac{175 \text{ g}}{1 \text{ mol}} = 8.05 \cdot 10^{-6} \text{ g} \cdot L^{-1}$.

Resultado: a)
$$S = 0.6265 \text{ g} \cdot \text{L}^{-1}$$
; b) $S' = 8.05 \cdot 10^{-6} \text{ g} \cdot \text{L}^{-1}$.

CUESTIÓN 2.- Cuando en un volumen de agua oxigenada, H_2O_2 , se disuelve una sal de Fe^{2+} , en principio podrían ocurrir las siguientes reacciones:

$$H_2O_2 + Fe^{2+} \implies H_2O + Fe^{3+} \text{ \'o } H_2O_2 + Fe^{2+} \implies O_2(g) + Fe(s).$$

a. Ajusta ambas reacciones por el método del ión-electrón.

b. Justifica la espontaneidad de cada una de ellas en condiciones estándar.

DATOS: $E^{0}(Fe^{2+}/Fe) = -0.447 \text{ V}$; $E^{0}(Fe^{3+}/Fe^{2+}) = 0.771 \text{ V}$; $E^{0}(H_{2}O_{2}/H_{2}O) = 1.776 \text{ V}$ y $E^{0}(O_{2}/H_{2}O_{2}) = 0.695 \text{ V}$.

Solución:

a) Las semirreacciones de oxido-reducción, ajustadas atómica y electrónicamente son:

Ánodo: Semirreacción de reducción: $H_2O_2 + 2 H^+ + 2 e^- \implies 2 H_2O$

Cátodo: Semirreacción de oxidación: $Fe^{2+} - 1e^{-} \implies Fe^{3+}$.

Multiplicando la semirreacción de oxidación por 2 para igualar los electrones y sumándolas se tiene la ecuación ajustada:

$$H_2O_2 + 2 H^+ + 2 e^- \implies 2 H_2O$$

 $2 Fe^{2+} - 2 e^- \implies 2 Fe^{3+}.$
 $H_2O_2 + 2 Fe^{2+} + 2 H^+ \implies 2 H_2O + 2 Fe^{3+}.$

Cátodo: Semirreacción de oxidación: $H_2O_2 - 2e^- \implies O_2 + 2H^+$

Ánodo: Semirreacción de reducción: $Fe^{2+} + 2e^{-} \Rightarrow Fe$.

Sumando ambas semirreacciones para eliminar los electrones, queda la ecuación ajustada:

$$H_2O_2 - 2e^- \implies O_2 + 2H^+$$
 $Fe^{2+} + 2e^- \implies Fe.$
 $H_2O_2 + Fe^{2+} \implies O_2 + Fe + 2H^+.$

b) Calculando el potencial estándar de cada pila se conoce si la reacción es o no espontánea, pues la espontaneidad viene determinada por el valor positivo de dicho potencial.

Para toda reacción redox, su potencial estándar de reducción es: $E^{o}_{pila} = E^{o}_{cátodo} - E^{o}_{ánodo}$ y al actuar como cátodo la semirreacción de reducción y como ánodo la de oxidación (cambia el signo de su potencial estándar de reducción por tratarse de una oxidación), se tiene:

Primera semirreacción: $E_{pila}^{o} = 1,776 \text{ V} - 0,771 \text{ V} = 1,005 \text{ V}$. Reacción espontánea.

Para la segunda semirreacción, el valor de su potencial estándar de reducción es:

 $E_{pila}^{o} = -0.447 \text{ V} - 0.695 \text{ V} = -1.142 \text{ V}$. Reacción no espontánea.

OPCIÓN B

CUESTIÓN 2.- Las nieblas de contaminación urbana se deben en parte a los óxidos de nitrógeno.

Se ha estudiado la cinética de la reacción exotérmica: NO + $\frac{1}{2}$ O₂ \Rightarrow NO₂ y se ha determinado que

cuando se duplica la [O2] manteniendo constante la [NO], la velocidad de reacción se duplica; y cuando la [NO] se duplica manteniendo constante la [O₂] la velocidad de reacción se hace 4 veces mayor.

- a) Calcula el orden total de la reacción.
- b) Determina las unidades de la constante de velocidad, k.
- c) Dibuja un gráfico que represente la variación de energía durante el transcurso de la reacción, incluyendo todas las magnitudes de energía implicadas.

Solución:

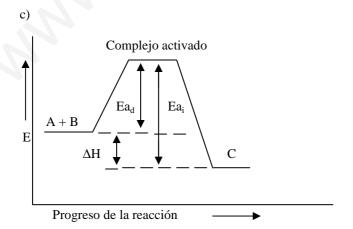
a) Los ordenes de reacción respecto de los reactivos NO y O₂ son α y β.

Si al duplicar la concentración del reactivo O2, manteniendo constante la del NO, se duplica la velocidad, dividiendo la expresión de la velocidad para la concentración duplicada de O2, entre la de la concentración sin duplicar, se halla el orden de reacción del reactivo O2, es decir, dividiendo:

concentración sin duplicar, se nana el orden de reactivo
$$O_2$$
, es decir, dividien $2 \cdot v = k \cdot [NO]^{\alpha} \cdot [2 \cdot O_2]^{\beta}$ entre $v = k \cdot [NO]^{\alpha} \cdot [O_2]^{\beta}$ se obtiene el orden del reactivo O_2 .
$$\frac{2 \cdot v}{v} = \frac{k \cdot 0.020^{\alpha} \cdot 2^{\beta} \cdot 0.010^{\beta}}{k \cdot 0.020^{\alpha} \cdot 0.010^{\beta}} \implies 2 = 2^{\beta} \implies \beta = 1$$

El orden de reacción respecto al reactivo O2 es 1.

Procediendo de la misma manera para el doble de la concentración de NO, manteniendo constante la de O2, se obtiene el orden de reacción del reactivo NO, es decir, dividiendo la expresión de la velocidad para la concentración duplicada de NO, entre la de la concentración sin duplicar, se halla el orden de reacción del reactivo NO: dividiendo $4 \cdot v_1 = k \cdot [2 \cdot NO]^{\alpha} \cdot [O_2]^{\beta}$ entre $v_1 = k \cdot [NO] \cdot [O_2]^{\beta}$;


$$\frac{4 \cdot v_1}{v_1} = \frac{k \cdot 2^{\alpha} \cdot 0.020^{\alpha} \cdot 0.020^{\beta}}{k \cdot 0.020^{\alpha} \cdot 0.020^{\beta}} \implies 4 = 2^{\alpha} \implies 2^2 = 2^{\alpha} \implies \alpha = 2$$

El orden de reacción respecto al reactivo NO es 2.

El orden total de la reacción es la suma de los órdenes parciales de los reactivos, lo que pone de manifiesto que el orden global de la reacción es 3.

b) Despejando k de la expresión anterior de la velocidad, sustituyendo los valores de α , β , las correspondientes unidades de velocidad y operando se tiene para las unidades de la constante k:

$$k = \frac{v}{[NO]^2 \cdot [O_2]} = \frac{mol \cdot L^{-1} \cdot s^{-1}}{mol^2 \cdot L^{-2} \cdot mol \cdot L^{-1}} = L^2 \cdot mol^{-2} \cdot s^{-1}$$

PROBLEMA 1.- Se disuelven 10,8 g de ácido cloroso, HClO₂, en agua suficiente hasta 525 mL finales de disolución.

- a) Calcula el pH de la disolución resultante.
- b) Calcula el volumen de agua que hay que añadir a la disolución anterior para que el pH sea 2, considerando que los volúmenes sean aditivos.

DATO: $K_{\text{ácido}} = 0.0115$.

Solución:

a) La concentración de la disolución es:
$$M = \frac{moles}{volumen} = \frac{\frac{gramos}{masa \, molar}}{volumen} = \frac{\frac{10,8 \, g}{68,5 \, g \cdot mol^{-1}}}{0,525 \, L} = 0,3 \, M.$$

Para calcular el pH hay que conocer la concentración de iones H₃O⁺ en el equilibrio. Llamando x a la concentración de ácido que se disocia, las concentraciones en el equilibrio de las distintas especies que lo forman son:

$$HClO_2 + H_2O \implies H_3O^+(aq) + ClO_2^-(aq)$$

$$K_a = \frac{[H_3O^+] \cdot [ClO_2^-]}{[HClO_2]} \Rightarrow 0.0115 = \frac{x^2}{0.3 - x} \Rightarrow x^2 + 0.0115 \cdot x - 0.00345 = 0, \text{ que}$$

resuelta proporciona los valores: $x_1 = 0,053$ M y otro negativo que no sirve, por lo que el pH de la disolución formada es: pH = $-\log [H_3O^+] = -\log 5.3 \cdot 10^{-2} = 2 - \log 5.3 = 2 - 0.72 = 1.28$.

b) Si el pH de la nueva disolución que se forme ha de ser 2, ello pone de manifiesto que la concentración de iones H_3O^+ en el equilibrio ha de ser: $[H_3O^+] = 10^{-pH} = 10^{-2}$ M. Luego, siendo M la concentración de la nueva disolución, en el equilibrio se cumple que las concentraciones de las distintas especies son:

$$K_a = \frac{\left[H_3O^+\right] \cdot \left[ClO_2^-\right]}{\left[HClO_2\right]} \Rightarrow 0.0115 = \frac{0.01^2}{M - 0.01} \Rightarrow M = \frac{0.01^2 + 0.0115 \cdot 0.01}{0.0115} = 0.0187 \text{ M}.$$

Los moles de ácido en la nueva disolución son los mismos que en la inicial, siendo el volumen de agua a añadir el que se obtiene de la definición de molaridad.

Los moles en la disolución inicial son:
$$n = \frac{gramos}{masa\ molar} = \frac{10.8\ g}{68.5\ g \cdot mol^{-1}} = 0.157\ moles.$$

$$M = \frac{moles}{volumen} \implies 0.0187 \, moles \cdot L^{-1} = \frac{0.157 \, moles}{V} \implies V = \frac{0.157 \, moles}{0.0187 \, moles \cdot L^{-1}} = 8.4 \, L.$$

Si se ha pasado de un volumen de 0,525 L a otro de 8,4 L, el volumen de agua añadida es: V = 8.4 L - 0.525 L = 7.875 L de agua.

- PROBLEMA 2.- Se dispone de dos celdas electrolíticas conectadas en serie que contienen disoluciones acuosas de sulfato de níquel (II) (NiSO₄) y nitrato de plata (AgNO₃), respectivamente. Se hace pasar una corriente eléctrica por el circuito hasta que se depositan 0,650 g de plata en la segunda celda.
- a) Escribe las reacciones que tienen lugar en el cátodo de cada una de las celdas. Explica si el potencial será positivo o negativo.
 - b) Calcula cuántos gramos de níquel se habrán depositado en la primera celda.
- c) Calcula cuánto tiempo habrá durado el proceso si la intensidad de la corriente eléctrica ha sido de 2,5 A.

Solución:

a) Las semirreacciones que se producen en cada uno de los cátodos de las celdas es:

Celda del AgNO₃:
$$Ag^{+} + 1e^{-} \rightarrow Ag$$
.
Celda de NiSO₄: $Ni^{2+} + 2e^{-} \rightarrow Ni$.

b) Aplicando la expresión deducida de las leyes de Faraday, se obtiene la masa de plata y níquel que se deposita en los cátodos: $m = \frac{M \cdot I \cdot t}{z \cdot F}$.

Por estar ambas celdas conectadas en serie pasa por ellas la misma intensidad de corriente en el mismo tiempo, por lo que, el producto $I \cdot t$ es el mismo en ambas cubas y al ser constante el Faraday,

despejando esta constante en ambas cubas e igualándolas, se tiene: $F = \frac{M_{Ag} \cdot I \cdot t}{m_{Ag} \cdot z_{Ag}}$; $F = \frac{M_{Ni} \cdot I \cdot t}{m_{Ni} \cdot z_{Ni}}$.

$$\frac{M_{Ag} \cdot I \cdot t}{m_{Ag} \cdot z_{Ag}} = \frac{M_{Ni} \cdot I \cdot t}{m_{Ni} \cdot z_{Ni}} \quad \Rightarrow \quad \frac{108 \ g \cdot mol^{-1} \cdot I \cdot t}{0,650 \ g \cdot 1} = \frac{58,7 \ g \cdot mol^{-1} \cdot I \cdot t}{m_{Ni} \cdot 2}.$$

Simplificando, despejando la masa de níquel y operando se obtiene el valor:

$$m_{Ni} = \frac{58.7 \text{ g} \cdot mol^{-1} \cdot 0,650 \text{ g}}{108 \text{ g} \cdot mol^{-1} \cdot 2} = 0,177 \text{ g Ni}$$

c) Despejando el tiempo de la ecuación deducida de las leyes de Faraday, sustituyendo valores y operando, para la celda de la plata, sale:

$$t = \frac{m \cdot z \cdot F}{M \cdot I} = \frac{0,650 \ g \cdot 1.96.500 \ A \cdot s \cdot mol^{-1}}{108 \ g \cdot mol^{-1} \cdot 2,5 \ A} = 232,31 \ s.$$

Resultado: b) 0,177 g Ni; b) 232,31 s.