

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017

MATEMÁTICAS II

TEMA 3: ESPACIO AFIN Y EUCLIDEO

- Junio, Ejercicio 4, Opción A
- Junio, Ejercicio 4, Opción B
- Reserva 1, Ejercicio 4, Opción A
- Reserva 1, Ejercicio 4, Opción B
- Reserva 2, Ejercicio 4, Opción A
- Reserva 2, Ejercicio 4, Opción B
- Reserva 3, Ejercicio 4, Opción A
- Reserva 3, Ejercicio 4, Opción B
- Reserva 4, Ejercicio 4, Opción A
- Reserva 4, Ejercicio 4, Opción B
- Septiembre, Ejercicio 4, Opción A
- Septiembre, Ejercicio 4, Opción B

Considera el punto
$$P(1,-1,0)$$
 y la recta r dada por
$$\begin{cases} x = 1 + 3t \\ y = -2 \\ z = t \end{cases}$$

- a) Determina la ecuación del plano que pasa por P y contiene a r.
- b) Halla las coordenadas del punto simétrico de P respecto de r.
- MATEMÁTICAS II. 2017. JUNIO. EJERCICIO 4. OPCIÓN A.

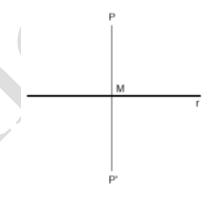
RESOLUCIÓN

a) De la recta:
$$r = \begin{cases} x = 1 + 3t \\ y = -2 \\ z = t \end{cases}$$
 sabemos un punto $A = (1, -2, 0)$ y su vector director $\overrightarrow{u} = (3, 0, 1)$.

El plano que nos piden viene definido por el punto P = (1, -1, 0) y los vectores directores $\overrightarrow{u} = (3, 0, 1)$ y $\overrightarrow{PA} = (0, -1, 0)$, luego, su ecuación será:

$$\begin{vmatrix} x-1 & 3 & 0 \\ y+1 & 0 & -1 \\ z & 1 & 0 \end{vmatrix} = 0 \Rightarrow -x+3z+1=0$$

b)



Cualquier punto de la recta tiene de coordenadas M = (1+3t, -2, t). Calculamos el vector $\overrightarrow{PM} = (1+3t-1, -2+1, t-0) = (3t, -1, t)$. Queremos que el vector \overrightarrow{PM} sea perpendicular al vector director de la recta $\overrightarrow{u} = (3,0,1)$, luego: $\overrightarrow{PM} \cdot \overrightarrow{u} = 0 \Rightarrow (3t, -1, t) \cdot (3,0,1) = 0 \Rightarrow 9t + t = 0 \Rightarrow t = 0$

Por lo tanto el punto M tiene de coordenadas: M = (1, -2, 0). Si llamamos al punto simétrico P' = (a, b, c), se cumple que:

$$\frac{(1,-1,0)+(a,b,c)}{2} = (1,-2,0) \Rightarrow P' = (1,-3,0)$$

Considera los vectores $\overrightarrow{u} = (1,0,1), \overrightarrow{v} = (0,2,1) \ \overrightarrow{y} \ \overrightarrow{w} = (m,1,n).$

- a) Halla m y n sabiendo que u, v y w son linealmente dependientes y que w es ortogonal a u.
- b) Para n=1, halla los valores de m para que el tetraedro determinado por $\stackrel{\rightarrow}{u},\stackrel{\rightarrow}{v}\stackrel{\rightarrow}{y}\stackrel{\rightarrow}{w}$ tenga volumen 10 unidades cúbicas

MATEMÁTICAS II. 2017. JUNIO. EJERCICIO 4. OPCIÓN B.

RESOLUCIÓN

a) Si los vectores son linealmente dependientes, su determinante vale 0.

$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ m & 1 & n \end{vmatrix} = 0 \Rightarrow 2n - 2m - 1 = 0$$

Si \overrightarrow{w} es ortogonal a $\overrightarrow{u} \Rightarrow \overrightarrow{w} \cdot \overrightarrow{u} = 0 \Rightarrow m + n = 0$

Resolviendo el sistema formado por las dos ecuaciones, obtenemos que: $m = -\frac{1}{4}$; $n = \frac{1}{4}$

b) El volumen del tetraedro es $\frac{1}{6}$ del volumen del paralelepípedo que determinan los tres vectores, es decir:

$$V = 10 = \frac{1}{6} \text{ Valor absoluto de } \begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ m & 1 & 1 \end{vmatrix} = \frac{1}{6} |1 - 2m| \Rightarrow |1 - 2m| = 60 \Rightarrow \begin{cases} 1 - 2m = 60 \Rightarrow m = -\frac{59}{2} \\ -1 + 2m = 60 \Rightarrow m = \frac{61}{2} \end{cases}$$

Considera los vectores $\vec{u} = (2,3,4)$, $\vec{v} = (-1,-1,-1)$ $\vec{y} = (-1,\lambda,-5)$ siendo λ un número real.

- a) Halla los valores de λ para los que el paralelepípedo determinado por \vec{u} , \vec{v} y \vec{w} tiene volumen 6 unidades cúbicas.
- b) Determina el valor de λ para el que \vec{u} , \vec{v} y \vec{w} son linealmente dependientes.

MATEMÁTICAS II. 2017. RESERVA 1. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN

a) El volumen del paralelepípedo viene dado por el valor absoluto del producto mixto de los tres vectores.

$$\begin{vmatrix} 2 & 3 & 4 \\ -1 & -1 & -1 \\ -1 & \lambda & -5 \end{vmatrix} = -2\lambda - 6 \Rightarrow |-2\lambda - 6| = 6 \Rightarrow \lambda = 0 ; \lambda = -6$$

b) Para que los vectores sean linealmente dependientes su determinante tiene que ser 0, es decir:

$$\begin{vmatrix} 2 & 3 & 4 \\ -1 & -1 & -1 \\ -1 & \lambda & -5 \end{vmatrix} = -2\lambda - 6 = 0 \Rightarrow \lambda = -3$$

Sea r la recta que pasa por A(4,3,6) y B(-2,0,0) y sea s la recta dada por $\begin{cases} x = 2 + \lambda \\ y = \lambda \\ z = 1 - 2\lambda \end{cases}$

- a) Determina la posición relativa de r y s.
- b) Calcula, si existen, los puntos C de s tales que los vectores \overrightarrow{CA} y \overrightarrow{CB} son ortogonales. MATEMÁTICAS II. 2017. RESERVA 1. EJERCICIO 4. OPCIÓN B.

RESOLUCIÓN

a) La recta r viene definida por A(4,3,6) y el vector $\overrightarrow{AB} = (-6,-3,-6)$. La recta s viene definida por el punto D(2,0,1) y el vector $\overrightarrow{u} = (1,1,-2)$. Calculamos el vector $\overrightarrow{AD} = (-2,-3,-5)$. Calculamos el rango de la matriz formada por los tres vectores:

$$M = \begin{pmatrix} 1 & 1 & -2 \\ -6 & -3 & -2 \\ -2 & -3 & -5 \end{pmatrix} \xrightarrow{F_2 + 6F_1 \atop F_3 + 2F_1} \begin{pmatrix} 1 & 1 & -2 \\ 0 & 3 & -14 \\ 0 & -1 & -9 \end{pmatrix} \xrightarrow{F_2 + 3F_3} \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & -41 \\ 0 & -1 & -9 \end{pmatrix} \Rightarrow R(M) = 3$$

Luego, las rectas se cruzan

b) Cualquier punto C de la recta s, tiene de componentes: C(2+t,t,1-2t). Calculamos los vectores: $\overrightarrow{CA} = (2-t,3-t,5+2t)$ y $\overrightarrow{CB} = (-4-t,-t,-1+2t)$. Si son ortogonales, su producto escalar vale cero:

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = (2-t, 3-t, 5+2t) \cdot (-4-t, -t, -1+2t) = 6t^2 + 7t - 13 = 0 \Rightarrow t = 1 ; t = -\frac{13}{6}$$

Luego, los puntos C son: $C_1(3,1,-1)$ y $C_2\left(-\frac{1}{6},-\frac{13}{6},\frac{16}{3}\right)$

Consider alas rectas dadas por
$$r \equiv \begin{cases} x - y + 1 = 0 \\ x - z + 1 = 0 \end{cases}$$
 $y = s \equiv \begin{cases} x = 1 - t \\ y = t \\ z = 2 \end{cases}$

a) Determina la ecuación de la recta que corta perpendicularmente a r y a s.

b) Halla la distancia entre las rectas r y s.

MATEMÁTICAS II. 2017. RESERVA 2. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN

a) Calculamos un punto genérico de cada recta y su vector director.

$$r = \begin{cases} x - y + 1 = 0 \\ x - z + 1 = 0 \end{cases} \Rightarrow \begin{cases} x = s \\ y = 1 + s \Rightarrow A(s, 1 + s, 1 + s) ; \vec{u} = (1, 1, 1) \\ z = 1 + s \end{cases}$$
$$s = \begin{cases} x = 1 - t \\ y = t \Rightarrow B(1 - t, t, 2) ; \vec{v} = (-1, 1, 0) \\ z = 2 \end{cases}$$

El vector \overrightarrow{AB} tiene de coordenadas: $\overrightarrow{AB} = (1-t-s, t-1-s, 1-s)$.

Como el vector \overrightarrow{AB} tiene que ser perpendicular a las rectas r y s, se debe cumplir:

$$\overrightarrow{AB} \cdot \overrightarrow{u} = 0 \Rightarrow (1 - t - s, t - 1 - s, 1 - s) \cdot (1, 1, 1) = 1 - t - s + t - 1 - s + 1 - s = 1 - 3s = 0 \Rightarrow s = \frac{1}{3}$$

$$\overrightarrow{AB} \cdot \overrightarrow{v} = 0 \Rightarrow (1 - t - s, t - 1 - s, 1 - s) \cdot (-1, 1, 0) = -1 + t + s + t - 1 - s = 2t - 2 = 0 \Rightarrow t = 1$$

Con lo cual: $A(s,1+s,1+s) = \left(\frac{1}{3}, \frac{4}{3}, \frac{4}{3}\right)$; B(1-t,t,2) = (0,1,2);

$$\overrightarrow{AB} = (1 - t - s, t - 1 - s, 1 - s) = \left(-\frac{1}{3}, -\frac{1}{3}, \frac{2}{3}\right)$$

La recta que nos piden es: $\frac{x - \frac{1}{3}}{-\frac{1}{3}} = \frac{y - \frac{4}{3}}{-\frac{1}{3}} = \frac{z - \frac{4}{3}}{\frac{2}{3}}$

b) La distancia es el módulo del vector $\overrightarrow{AB} = \left(-\frac{1}{3}, -\frac{1}{3}, \frac{2}{3}\right)$

$$d = \left| \overrightarrow{AB} \right| = \sqrt{\left(-\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(\frac{2}{3}\right)^2} = \sqrt{\frac{6}{9}} = 0.816 \ u$$

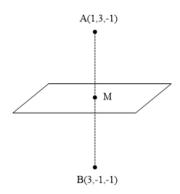
Considera los puntos A(1,3,-1) y B(3,-1,-1).

- a) Determina la ecuación del plano respecto del cual B es el simétrico de A.
- b) Siendo C(5,1,5), calcula el área del triángulo de vértices A;B y C.

MATEMÁTICAS II. 2017. RESERVA 2. EJERCICIO 4. OPCIÓN B.

RESOLUCIÓN

a)



Calculamos el punto M

$$M = \frac{A+B}{2} = \frac{(1,3,-1)+(3,-1,-1)}{2} = (2,1,-1)$$

Calculamos el vector $\overrightarrow{AB} = (2, -4, 0)$. Este vector es el normal del plano, luego su ecuación es:

$$2x - 4y + D = 0$$

Como queremos que pase por el punto M, entonces el plano tiene de ecuación:

$$2x-4y+D=0 \Rightarrow 2\cdot 2-4\cdot 1+D=0 \Rightarrow D=0 \Rightarrow 2x-4y=0$$

b) Calculamos el área del triángulo ABC.

$$\overrightarrow{AB} = (2, -4, 0)$$
; $\overrightarrow{AC} = (4, -2, 6)$.

$$S = \frac{1}{2} \begin{vmatrix} \overrightarrow{AB} \wedge \overrightarrow{AC} \end{vmatrix} = \frac{1}{2} \ m \acute{o} dulo \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & -4 & 0 \\ 4 & -2 & 6 \end{vmatrix} = \frac{1}{2} m \acute{o} dulo \left[-24 \ \overrightarrow{i} - 12 \ \overrightarrow{j} + 12 \ \overrightarrow{k} \right] = \frac{1}{2} \sqrt{(-24)^2 + (-12)^2 + (12)^2} = \frac{1}{2} \sqrt{864} = \sqrt{216} = 14'69 \ u^2$$

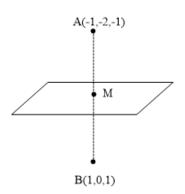
Considera los puntos A(-1,-2,-1) y B(1,0,1).

- a) Determina la ecuación del plano respecto del cual los puntos A y B son simétricos.
- b) Calcula la distancia de P(-1,0,1) a la recta que pasa por los puntos A y B.

MATEMÁTICAS II. 2017. RESERVA 3. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN

a)



Calculamos el punto M

$$M = \frac{A+B}{2} = \frac{(-1,-2,-1)+(1,0,1)}{2} = (0,-1,0)$$

Calculamos el vector $\overrightarrow{AB} = (2,2,2)$. Este vector es el normal del plano, luego su ecuación es:

$$2x + 2y + 2z + D = 0$$

Como queremos que pase por el punto M, entonces el plano tiene de ecuación:

$$2x + 2y + 2z + D = 0 \Rightarrow 2 \cdot 0 + 2 \cdot (-1) + 2 \cdot 0 + D = 0 \Rightarrow D = 2 \Rightarrow 2x + 2y + 2z + 2 = 0 \Rightarrow x + y + z + 1 = 0$$

b) La recta que pasa por A y B tiene de ecuación: $\begin{cases} x = -1 + 2t \\ y = -2 + 2t \end{cases}$. Cualquier punto de esta recta tiene z = -1 + 2t

de coordenadas: C(-1+2t, -2+2t, -1+2t). Calculamos el vector

$$\overrightarrow{PC}(-1+2t+1,-2+2t-0,-1+2t-1) = (2t,-2+2t,-2+2t)$$

Este vector tiene que ser perpendicular al vector director de la recta, luego:

$$\overrightarrow{PC} \cdot \overrightarrow{u} = 0 \Rightarrow (2t, -2 + 2t, -2 + 2t) \cdot (2, 2, 2) = 0 \Rightarrow 4t - 4 + 4t - 4 + 4t = 0 \Rightarrow t = \frac{2}{3}$$

La distancia del punto P a la recta es el módulo del vector $\overrightarrow{PC} = \left(\frac{4}{3}, -\frac{2}{3}, -\frac{2}{3}\right)$, luego:

$$d = |\overrightarrow{PC}| = \sqrt{\left(\frac{4}{3}\right)^2 + \left(-\frac{2}{3}\right)^2 + \left(-\frac{2}{3}\right)^2} = 1'63 \ u$$

Considera los puntos A(1,1,1), B(0,-2,2), C(-1,0,2) y D(2,-1,-2).

- a) Calcula el volumen del tetraedro de vértices A, B, C y D.
- b) Determina la ecuación de la recta que pasa por D y es perpendicular al plano determinado por los puntos A, B y C.

MATEMÁTICAS II. 2017. RESERVA 3. EJERCICIO 4. OPCIÓN B.

RESOLUCIÓN

a) Calculamos los vectores $\overrightarrow{AB} = (-1, -3, 1)$; $\overrightarrow{AC} = (-2, -1, 1)$ y $\overrightarrow{AD} = (1, -2, -3)$. El volumen del tetraedro será:

$$V = \frac{1}{6} \begin{vmatrix} -1 & -2 & 1 \\ -3 & -1 & -2 \\ 1 & 1 & -3 \end{vmatrix} = \frac{1}{6} |15| = \frac{15}{6} u^3$$

b) El vector director de la recta es el vector normal del plano, luego:

$$\vec{AB} \land \vec{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & -3 & 1 \\ -2 & -1 & 1 \end{vmatrix} = -2\vec{i} - \vec{j} - 5\vec{k} = (-2, -1, -5)$$

La recta que nos piden es: $\frac{x-2}{-2} = \frac{y+1}{-1} = \frac{z+2}{-5}$

Sea π el plano determinado por los puntos A(1,0,0); B(0,1,0) y $C(0,0,\lambda)$, siendo λ un número real, y sea r la recta dada por $r \equiv \begin{cases} y-z=3\\ -x+2y=3 \end{cases}$

a) Halla la ecuación del plano que pasa por A y contiene a r.

b) Estudia la posición relativa de r y π según los valores de λ .

MATEMÁTICAS II. 2017. RESERVA 4. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN

La recta pasa por el punto P = (-3,0,-3) y su vector director es $\stackrel{\rightarrow}{u} = (2,1,1)$. El plano que nos piden viene definido por el punto A = (1,0,0), el vector $\stackrel{\rightarrow}{u} = (2,1,1)$ y el vector $\stackrel{\rightarrow}{AP} = (-4,0,-3)$, luego, su ecuación es:

$$\begin{vmatrix} x-1 & 2 & -4 \\ y & 1 & 0 \\ z & 1 & -3 \end{vmatrix} = 0 \Rightarrow 3x - 2y - 4z - 3 = 0$$

b) Calculamos la ecuación del plano. El plano que nos piden viene definido por el punto A = (1,0,0) y los vectores $\overrightarrow{AB} = (-1,1,0)$ y $\overrightarrow{BC} = (0,-1,\lambda)$. Por lo tanto su ecuación será:

$$\pi \equiv \begin{vmatrix} x-1 & -1 & 0 \\ y & 1 & -1 \\ z & 0 & \lambda \end{vmatrix} = \lambda x + \lambda y + z - \lambda = 0$$

Estudiamos el sistema formado por las ecuaciones de la recta y el plano -x + 2y = 3 $\lambda x + \lambda y + z = \lambda$

$$\begin{vmatrix} A \end{vmatrix} = \begin{vmatrix} 0 & 1 & -1 \\ -1 & 2 & 0 \\ \lambda & \lambda & 1 \end{vmatrix} = 3\lambda + 1 = 0 \implies \lambda = -\frac{1}{3}$$

	R(A)	R(M)	
$\lambda = -\frac{1}{3}$	2	3	Recta paralela al plano.
$\lambda \neq -\frac{1}{3}$	3	3	Recta secante al plano.

Considera el punto P(-1,0,1), el vector $\vec{u} = (1,2,1)$ y el plano π de ecuación y = 0.

- a) Halla la ecuación de la recta que pasa por P, está contenida en π y cuyo vector director es perpendicular a \vec{u} .
- b) Determina la ecuación del plano que pasa por P, es perpendicular a π y del que \vec{u} es un vector director.

MATEMÁTICAS II. 2017. RESERVA 4. EJERCICIO 4. OPCIÓN B.

RESOLUCIÓN

a) La recta pasa por el punto P(-1,0,1) y su vector director es $\vec{v}=(a,b,c)$. Como la recta es perpendicular a $\vec{u}=(1,2,1)$, el producto escalar de $\overset{\rightarrow}{u\cdot v}=0 \Rightarrow a+2b+c=0$. Además la recta está contenida en el plano y=0, entonces el producto escalar del vector normal del plano $\vec{n}=(0,1,0)$ y el vector $\vec{v}=(a,b,c)$, también es cero, luego: b=0.

Resolviendo el sistema formado por las dos ecuaciones, tenemos:

$$\begin{vmatrix} a+2b+c=0 \\ b=0 \end{vmatrix} \Rightarrow \overrightarrow{v} = (-c,0,c)$$

Vemos que hay infinitos vectores. Si por ejemplo, damos a c el valor 1, la recta será:

$$\frac{x+1}{-1} = \frac{y}{0} = \frac{z-1}{1}$$

b) El plano que nos piden viene definido por el punto P(-1,0,1), el vector $\overrightarrow{u}=(1,2,1)$ y el vector normal del plano π , $\overrightarrow{n}=(0,1,0)$, luego, su ecuación es:

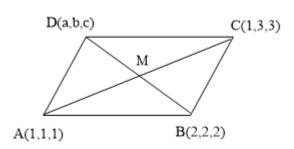
$$\begin{vmatrix} x+1 & 1 & 0 \\ y & 2 & 1 \\ z-1 & 1 & 0 \end{vmatrix} = 0 \Rightarrow -x+z-2 = 0$$

Los puntos A(1,1,1), B(2,2,2) y C(1,3,3) son vértices consecutivos del paralelogramo ABCD.

- a) Calcula el área del paralelogramo.
- b) Halla la ecuación general del plano que contiene a dicho paralelogramo.
- c) Calcula las coordenadas del vértice D.

MATEMÁTICAS II. 2017. SEPTIEMBRE. EJERCICIO 4. OPCIÓN A.

RESOLUCIÓN



a) Calculamos los vectores $\overrightarrow{AB} = (1,1,1)$ y $\overrightarrow{AC} = (0,2,2)$ y el área del paralelogramo es:

$$\vec{AB} \land \vec{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 0 & 2 & 2 \end{vmatrix} = (0, -2, 2)$$

$$\acute{A}rea = m\acute{o}dulo \left| \overrightarrow{AB} \wedge \overrightarrow{AC} \right| = \sqrt{(0)^2 + (-2)^2 + (2)^2} = \sqrt{8} u^2$$

b) Calculamos los vectores $\overrightarrow{AB} = (1,1,1)$ y $\overrightarrow{AC} = (0,2,2)$ y la ecuación del plano es:

$$\begin{vmatrix} x-1 & 1 & 0 \\ y-1 & 1 & 2 \\ z-1 & 1 & 2 \end{vmatrix} = 0 \Rightarrow y-z=0$$

c) Calculamos las coordenadas del punto medio M

$$M = \frac{A+C}{2} \Rightarrow M = \frac{(1,1,1)+(1,3,3)}{2} = (1,2,2)$$

Calculamos las coordenadas del vértice D

$$M = \frac{B+D}{2} \Rightarrow (1,2,2) = \frac{(2,2,2)+(a,b,c)}{2} \Rightarrow D = (0,2,2)$$

Considera el punto P(0,1,1) y la recta r dada por $\begin{cases} x-2y=-5\\ z=2 \end{cases}$

a) Determina la ecuación del plano que pasa por P y contiene a r.

b) Halla las coordenadas del punto simétrico de P respecto de r.

MATEMÁTICAS II. 2017. SEPTIEMBRE. EJERCICIO 4. OPCIÓN B.

RESOLUCIÓN

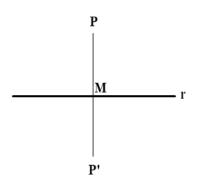
a) La ecuación del haz de planos es: x-2y+5+k(z-2)=0.

Como queremos el plano que pasa por P(0,1,1), tenemos que:

$$0 - 2 \cdot 1 + 5 + k(1 - 2) = 0 \Longrightarrow k = 3$$

luego, el plano es: $x-2y+5+3(z-2)=0 \Rightarrow x-2y+3z-1=0$

b)



Pasamos la recta r a paramétricas: $\begin{cases} x - 2y = -5 \\ z = 2 \end{cases} \Rightarrow \begin{cases} x = -5 + 2t \\ y = t \\ z = 2 \end{cases}$, con lo cual:

$$M = (-5+2t,t,2)$$
; $\stackrel{\rightarrow}{u} = (2,1,0)$

Para calcular el simétrico del punto P = (0,1,1) respecto de la recta, el vector $\overrightarrow{PM} = (-5 + 2t, t - 1, 1)$

y el vector u = (2,1,0) tienen que ser perpendiculares, luego:

$$\overrightarrow{PM} \cdot \overrightarrow{u} = 0 \Rightarrow (-5 + 2t, t - 1, 1) \cdot (2, 1, 0) = 0 \Rightarrow -10 + 4t + t - 1 = 0 \Rightarrow t = \frac{11}{5} \Rightarrow M = \left(-\frac{3}{5}, \frac{11}{5}, 2\right)$$

El punto simétrico cumple que:

$$\frac{P+P'}{2} = M \Rightarrow \left(\frac{0+a}{2}, \frac{1+b}{2}, \frac{1+c}{2}\right) = \left(-\frac{3}{5}, \frac{11}{5}, 2\right) \Rightarrow P' = \left(-\frac{6}{5}, \frac{17}{5}, 3\right)$$