Departamento de Física y Química.

Alumnos de 3º ESO.

Asignatura: Física y Química.

Tema 1. 3º ESO. MAGNITUDES Y UNIDADES.

CONTENIDOS.

- 1) Método científico. Fases del método científico: observación, formulación de hipótesis, experimentación.
 - 2) Fenómenos físicos y fenómenos químicos o reacciones químicas
 - 3) Magnitudes físicas.
 - 4) La medida.
 - 5) Magnitudes fundamentales y su unidad en el sistema internacional de unidades.
 - 4) Magnitudes derivadas. Definición y préndete 4 magnitudes derivadas y su unidad.
 - 5) Múltiplos de la unidad y divisores de la unidad.
 - 6) Notación científica y cifras significativas.
 - 7) Instrumentos de medida. Imprecisión en la medida. Errores.
 - 8) Material y normas de seguridad en el laboratorio.

EJERCICIOS. TEMA 1. Magnitudes y unidades.

- 1.1 De las siguientes palabras, indica cuáles son magnitudes y cuáles no lo son.
 - . Longitud

 - . calor
 - . vaso de agua
 - . unas gafas
 - . velocidad.
 - . peso
 - . sonido.
 - . arco iris
 - . tiempo
 - . Masa

- . Temperatura.
- . relámpago
- . superficie.
- . energía.
- . cariño.
- . densidad
- . luz.
- . dolor
- . una mesa . Sueño

1.2 Completa la siguiente tabla:

Factor	Prefijo	Símbolo	Ejemplo
10 ⁹			
	deca		dam = 10 m
		h	
10 ⁶			
	kilo		kg = 1000 g
		d	
	centi		cl = 10 ⁻² litros
10 ⁻⁶			
	nano		nm =
		m	

- 1.3 Expresa en las unidades que se indican las siguientes medidas utilizando factores de conversión.
 - a) $5 \text{ km} \rightarrow \text{metros}$.
 - b) $8 \, dm \rightarrow cm$
 - c) $56 \text{ cm} \rightarrow \text{dm}$
 - d) 7 mm → m.

- e) 56 cm \rightarrow hm
- f) 480 mm → km
- g) 5,6 dm \rightarrow mm
- h) $0.4 \text{ cm} \rightarrow \text{dam}$

1.4 A) $5 \text{ kg} \rightarrow \text{kg}$

D) 0'092 g \rightarrow cg

B) $0.6 \text{ kg} \rightarrow \text{gramos}$.

E) 13,5 dg \rightarrow dag

1.5 ¿Qué cantidad es mayor 1600 g ó 1,5 kg; 1450 mm ó 1,3 m; 1 litro ó 110 mililitros?

1.6 Expresa en las unidades que se indica

a) 240 g \rightarrow kg.

- b) $26 \text{ cm} \rightarrow \text{hm}$
- c) $0'6 \text{ m}^3 \rightarrow \text{litros}$

d) $8'5 \text{ km}^3 \rightarrow \text{m}^3$

- e) 120 mililitros →
- litros → dm³

1.7 Durante un experimento en el laboratorio, un estudiante mide la masa de 10 centímetros cúbicos de agua. Luego mide la masa de 20 centímetros cúbicos y así hasta obtener los datos. Volumen: 10, 20, 30, 40, 50, siendo las masas respectivas de las medidas: Masa(g): 10, 20, 29, 40, 50.

Elabora una gráfica con los valores indicados en la tabla. Describe la curva resultante. ¿Cuál será la masa de 35 centímetros cúbicos de agua?. ¿Cuál será el volumen de 15 g?

1.8 Enumera las fases del método científico. Explica en qué consiste la experimentación.

1.9 Completa la siguiente tabla y memoriza las 5 primeras.

Magnitud	Unidad Sistema Internacional	Símbolo
Longitud		
		kg
	Segundo	
		Α
		K
Intensidad luminosa		
	Mol	

1.10 Cambia a la unidad correspondiente del Sistema Internacional las siguientes cantidades.

- a) 1 milisegundo =
- segundos.
- b) 12 Megametros =
- c) 75 miliamperios =
- d) 74'6 kg =

1.11 Expresa en las unidades que se indican las siguientes medidas utilizando factores de conversión.

a) 70 kl \rightarrow litros.

e) 2 min \rightarrow s

b) 0'053 ml → dl

f) 1,50 h → min

c) 344 cl → dal

g) 1,30 h \rightarrow minutos

d) 15000 hl → I

h) $600 s \rightarrow h$

- 1.12 A) 3'5 min a segundos
- B) 90 s > min

- C) 1,3 h
- a minutos
- D) 86400 s →

- E) 1'2 días a horas
- F) $6h \rightarrow$
- días días

1.13 Verdadero o falso?

- * Las propiedades de los cuerpos que se pueden medir se llaman magnitudes fundamentales.
- * El decímetro cúbico es una unidad de volumen.
- * el litro es la unidad de volumen del S.I.
- * el metro es la unidad de superficie en el S.I.
- * el kilogramo es una magnitud porque se puede medir.
- El peso se mide en Newton.

1.14 El suelo de una habitación tiene 320 cm de largo y 2200 mm de ancho; ¿cuánto m² de parquet necesitamos para poner en el suelo de esa habitación?. (Recuerda: área rectángulo = base por altura).

- 1.15 ¿Qué cantidad es mayor: una superficie de 9,2 hm² ó el área de un rectángulo que tiene de largo 800 m y de ancho 25 dam?
- 1.16 expresa las siguientes medidas en las unidades del SI, utilizando la notación científica: 76 km, 3 g, 5 dam, 25 cm, 32 mm, 325 ms y 82 g. (ms=milisegundo)
- 1.17 Un amperímetro marca $1,18 \pm 0,01$ A. Interpreta ee resultado de esa medida.
- 1.18 indica cuál es la unidad más adecuada para medir:

la distancia entre dos ciudades	longitud de un bolígrafo	La longitud de un folio
La distancia entre la puerta y la ventana de una habitación.	La distancia que hay del instituto a tu casa.	El tiempo que falta para que lleguen las vacaciones de verano
La masa de una moneda de 1 €.	La masa de un camión	La superficie de una provincia.
El tiempo que falta para salir de casa.	La superficie de un folio.	El volumen de una garrafa de agua.
El volumen del agua de un pantano.	El volumen de una chincheta.	La distancia entre dos estrellas.

1.19 Expresa en notación científica los siguientes números e indica el nº de cifras significativas de cada uno de ellos.

a) 103.483 =

b) 0,010030 =

c) 0'000 80137 =

d) 0,000 7010 =

e) 456,1=

1.20 Completa las siguientes igualdades:

$1 \text{ m}^3 =$	litros;	1 litro =	$dm^3 =$	cm³
8 litros =	dm ³	$50 \text{ cm}^3 =$	hm ³	
4 litros =	ml	8 g =	hg	

1.21 Completa la siguiente tabla:

Factor	Prefijo	Símbolo	Ejemplo
0,01=10 ⁻²		С	
	deca		1 dam = 10 m
		h	
10 ⁶			
	kilo		1 kg = 1000 g

- 1.22 ¿Cuáles son las propiedades generales de la materia?.
- 1.23 Cuáles son las unidades en el Sistema Internacional de masa, volumen y tiempo? .Indica cuál de estas magnitudes es derivada y cuál es fundamental.

1.24 Los datos de la tabla se refieren a un material por determinar.

		p				
MASA (g)	240	120	60	360	24	480
VOLUMEN (cm ³)	100	50	25	150	10	200

Representa en una gráfica la masa frente al volumen. ¿Cómo es esa gráfica?

- 1.25 Cinco alumno han medido la altura de uno de sus compañeros y han obtenido las siguientes medidas: 164 cm, 162 cm, 164 cm, 163 cm, 163 cm. Halla el error absoluto y relativo de la primera medida.
- 1.26 Al medir la longitud de un campo de fútbol de 101,56 m se ha obtenido un valor de 102 m; al medir el espesor de un libro de 3,24 cm se han medido 32 mm. ¿Cuál de las dos medidas tiene mayor calidad? Determina el error relativo de cada una de ellas.
- 1.27 En una carrera de 100 metros lisos, hay 5 cronometradores. Los tiempos que han medido para el vencedor de la carrera han sido los siguientes: 10'45 s, 10'62 s; 10'71 s. 10'52, 10'71 s. ¿Cuál será el tiempo oficial del ganador?

Tema 2. 3º ESO. LOS SISTEMAS MATERIALES

CONTENIDOS.

- 1. Propiedades generales de la materia: Masa, peso, volumen
- 2. Propiedades específicas de la materia.
- 3. Densidad: concepto, fórmula, unidad.
- 4. Estados de agregación de la materia. Propiedades de sólidos, líquidos y gases.
- 5. Modelo de la teoría cinética. Teoría cinético molecular de los gases
- 6. Temperatura. Escalas termométricas: Celsius y Kelvin. Cero absoluto.
- 7. Cambios de estado. Fusión, solidificación, Vaporización, evaporación y ebullición...
- 8. Puntos de fusión y de ebullición. Estado físico de un sustancia según sea su T en relación al PF y PE. Gráficas de calentamiento y enfriamiento de una sustancia.
- 9. Propiedades características o específicas de las sustancias puras.
- 10. Propiedades de los gases: modelo de la teoría cinética; expansibilidad, compresibilidad. Variación de la P, V o T de un gas manteniendo una de ellas constante; explicarlo mediante la teoría cinética.
- 11. Atmósfera. La presión atmosférica: qué es; a qué se debe, variación con la altitud. Unidad de presión.

EJERCICIOS. TEMA 2. Estados de agregación.

Z. I	¿Cuai de los sigui	entes terminos correspo	nde a materia?	
	Una roca.	Una nube.	Un pájaro.	Un átomo.
	El aire	El oxígeno.	La amistad.	Un gas.

- 2.2 Una pulsera de metal tiene una masa de 210 g y ocupa un volumen de 20 cm³. Determina la densidad de ese metal. ¿Podría ser de plata? La densidad de la plata es 10,5 kg/litro.
- 2.3 El oro tiene una densidad de 19,3 kg/ litro. a) Determina el volumen que ocupa una pulsera de 50 g de oro. b) ¿Qué volumen ocupará un lingote de 8 kg de oro?
- 2.4 El aceite tiene una densidad de 0,9 kg/L. a) ¿Cuántos kilos pesa una garrafa de 10 L de aceite?.b) ¿Qué volumen ocuparán 4 kg de aceite?
- 2.5 Queremos guardar 5 kg de mercurio en un recipiente de 0'4 litros. ¿Podremos hacerlo?. Dato: densidad del mercurio 13,6 kg/L.
- 2.6 ¿Cuántos kg de aire hay dentro de nuestro aula si ésta mide 10 m de largo x 6 m de ancho x 3 m de alto y la densidad del aire es 1,29 kg/m³?
- 2.7 Se han medido masas y volúmenes de trozos pequeños de mármol y se han obtenido los siguientes datos: masa (g) 9 14 22 29 41 48 60 65

Volumen (cm3) 3'1 4'8 7'6 10 14'1 16'6 20'7 22'4

- a) Observa ese cuadro ¿Puedes obtener, por la simple observación del cuadro una relación entre la masa de un trozo de mármol y su volumen?.
- b) Dibuja una gráfica tomando masas en ordenadas y volúmenes en abscisas ¿Qué forma tiene?.
- c) Divide cada masa por su volumen ¿se obtiene un cociente constante? ¿Qué significado tiene?.
- d) ¿Qué ley puedes establecer, ahora, que relacione masa y volumen para cualquier trozo de mármol?. Exprésala matemáticamente, llamando **m** a la masa en gramos de un trozo cualquiera de mármol y **V** a su volumen en cm³.
- 2.8 a) Explica cómo es el movimiento de las moléculas en cada uno de los estados de agregación.
 - b) ¿Cómo es la distancia intermolecular en cada uno de los tres estados de agregación?.
 - c) ¿ Que son las fuerzas intermoleculares?.
- 2.9 Los gases y los líquidos no tienen forma fija. Explica este hecho teniendo en cuenta sus propiedades microscópicas.
- 2.10 Ordena de mayor a menor las siguientes temperaturas. -25 °C; 240 K; 7 °C, 300 K.

2.11 ¿Cuáles son propiedades específicas de la materia?.

2.12 Indica cuales son las características más importantes de los líquidos.

2.13 Utilizando la teoría cinética, explica qué le ocurre a la presión de un gas si :

Aumentamos la temperatura manteniendo el mismo volumen.

Reducimos el volumen a la mitad.

Metemos más gas en el mismo recipiente.

Dejamos salir parte del gas.

2.14 Un gas encerrado en un recipiente, está a una temperatura constante de 20 °C. Ocupa inicialmente 200 litros siendo la presión de 1 atmósfera. Si se aumenta la presión se obtienen los siguientes valores del volumen

P=Presión (atm)	1	2	5	10	20
V=Volumen	200	100	40	20	10
(litros)					

a) Representa esos valores en una gráfica p-V (p en el eje de ordenadas o eje Y, V en el eje de abscisas o eje X).

b) ¿Son directamente proporcionales la p y la V?

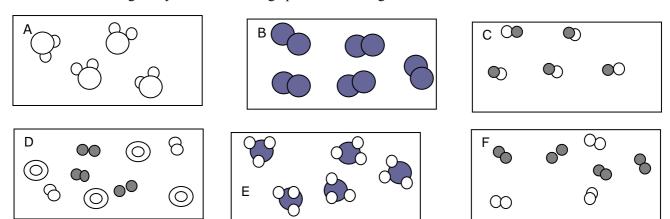
- 2.15 Los sólidos y los líquidos tienen volumen constante mientras que el volumen de los gases es variable. ¿A qué se debe?
- 2.16 Dibuja la gráfica de calentamiento del agua. (Ya debes saber cuales son el PF y el PE del agua).
- 2.17 Define los siguientes conceptos: temperatura de fusión, temperatura de ebullición, condensación, fusión, sublimación, solidificación, ebullición.
- 2.18 El punto de fusión del sodio es 98 °C y el de ebullición es 885 °C. Dibuja la gráfica de enfriamiento del sodio.
- 2.19 El punto de fusión del cobre es 1083 °C y el punto de ebullición es 2595 °C. a) ¿Qué indican esas dos temperaturas?. b) Estado físico del cobre a 500 °C, 1000 °C, 1500 °C y 2500 °C.
- 2.20 El punto de fusión del cobre es 1083 °C y el punto de ebullición es 2595 °C. a) ¿Qué indican esas dos temperaturas?. b) Explica razonadamente cual es el estado físico del cobre a 500 °C, 1000 °C, 1500 °C y 2500 °C.
- 2.21 El oxígeno hierve a –183 °C y funde a –219 °C. Indica el estado físico del oxígeno a –250 °C, –225 °C, –200 °C, –175 °C, –150 °C.
- 2.22 El Br hierve a 59 grados y su punto de fusión es –7 °C. A T ambiente, ¿cuál es el estado físico del Br?.
- 2.23 ¿Conoces algún otro elemento que esté en estado líquido a T ambiente?.
- 2.24 Si la temperatura de un gas permanece constante ¿a qué es debida la presión en el recipiente? ¿qué le ocurre al volumen del gas si aumentamos la presión manteniendo la temperatura constante?.
- 2.25 Si aumenta la T¿Qué les ocurre a las partículas de un sólido?
- 2.26 Dibuja la gráfica de calentamiento de una sustancia que inicialmente se encuentra a 20 °C sabiendo que sus puntos de fusión y ebullición son, respectivamente 80° y 130 °C.

Tema 3. 3º ESO. <u>CLASIFICACIÓN DE LA MATERIA.</u> SISTEMAS MATERIALES.

CONTENIDOS.

- 1. Sistemas materiales homogéneos y heterogéneos.
- 2. Sustancias puras y mezclas. Propiedades características de las sustancias puras.
- 3. Cuerpo simple o elemento. Cuerpo compuesto
- 4. Métodos de separación de mezclas heterogéneas: tamizado o cribado, filtración, sedimentación, decantación, separación magnética.
- 5. Disolución. Clases de disoluciones: según el estado físico; según la concentración (diluida, concentrada, saturada.)
- 6. Métodos para separar los componentes de una disolución. Cristalización, destilación, cromatografía, extracción.
- 7. Formas de expresar la concentración de una disolución. % en masa, % en volumen; concentración en masa (g/litro).
- 8. Solubilidad. Definición. Solubilidad de un gas en un líquido; variación con la T.

EJERCICIOS. TEMA 3. Sistemas materiales. Disoluciones.


3.1	De las siguientes sustancias, in	dica si son mezclas hetero	géneas (E) ó mezclas	homogéneas(O).
	Cocido	Vinagre	Licor Agua azucarada	Zumo de naranja
	Aire	Vinagre Agua mineral	Agua azucarada	roca de granito
	Lejía	Ensalada		
3.2	Completa y memoriza E aproximadamente por:	l aire es una	de sustancia	as gaseosas, formado
	El 78 % de			
	El 21 % de	· .		
	El 1 % restante de	······································		
3.3	Indica si las siguientes sustanci Agua de mar Cal viva (oxido de calcio) Aire Cloro Diamante (Carbono) Completa la siguiente tabla:	as son elementos (E), con Agua destilada Azufre Grafito (Carbono) Hierro	Lechesal común_	— —
Té	ecnica de separación de mezclas heterogéneas.	Para qué sirve y propi	edad en que se basa.	
	Filtración.			
	flotación			
	decantación			
	Separación magnética.			
	El agua mineral es una disolució sustancias disueltas como por ejemp. Te puede ayudar si miras la etiqueta El agua de mar es una Las dos sustancias más abundante a y Química 3º ESO.	lode un botella de agua minera	nl	·

3.6	Explica porqué el g ¿El hierro es un e El acero ¿es un el La sal común (o s El agua destilada	elemento? lemento? sal de cocina) es	un compuesto quí		:	
3.7	Explica qué es una	disolución. Si é	esta tiene dos com	ponentes ¿qué es el	disolvente y qué es el s	soluto?
3.8	¿.Podríamos decir	que una mezcla	de agua y arena e	s una disolución? ¿l	Por que?	
3.9	¿Qué es la concent	ración de una di	solución?.			
3.10	explica las diferenc	cias entre disolu	ción diluida, conc	entrada y saturada.	Pon un ejemplo de cada	a una de ellas.
3.11	Clasifica en diluida 2 g de lejía en 5 l 30 gramos de sal 0'8 kg azúcar en	itros de agua en 4 litros de ag	ua.	oluciones:		
3.12	Si en una botella de	e cerveza indica	5,5° ¿Qué quiere	decir?		
3.13	Identifica tres elem	entos y tres con	npuestos que man	ejes en tu vida diari	a.	
3.14	¿En qué consiste la	a decantación, l	la cristalización y	la destilación?.		
3.15	La concentración d	el agua de mar	es 28'5 g/L ¿cuán	ta sal podemos obte	ner con 10 litros de esa	agua de mar?.
	Preparamos una di nasa de soluto en la c			ruro de sodio disue	ltos en 550 g de agua. I	Halla el porcentaje en
3.17	¿Por qué se disuelv	e mejor el cacao	en leche caliente	que fría?.		
	Echamos en un vas atos de la tabla:	o 200 mililitros	de agua y 30 de a	zúcar. La disolución	n ocupa un volumen de	222 ml. Completa los
u	ares de la tasia.	nombre	Masa (g)	Masa (Kg)	Volumen (mL)	Volumen (L)
	Soluto					
	Disolvente					
	Disolución	1 1 1)		2)	· / /T	
	En esa disolución	i, calcula: 1) con	icentración en % e	n masa. 2) concentra	acion en g/L.	
	La concentración d Ialla la masa de sal d			de 20 g/l. El volum	en total de la disolución	n es de 4000 ml.
3.20	Elabora el esquema a) agua y alcohol			a las siguientes mez de hiero y arena d		
3.21				componentes de la ti denen puntos de fusio		
					ervo que no se disuelve eciben este tipo de disol	
3.23	Tenemos 25 g de un	na disolución de	sal en agua al 20 °	% en masa; se evapo	ora el agua ¿qué cantida	d de sal queda?.
3.24	Una disolución al 12	2 % de ácido sul	fúrico indica que e	n 100 gramos de di	solución hay	·

- 3.25 Para obtener 50 ml de alcohol puro ¿qué cantidad de licor de 40° hará falta?.
- 3.26 Hemos disuelto 3750 mg de sal en agua. El volumen total de la disolución es de 75 ml. Halla la concentración de la disolución expresada en g/l. Sol: 15 g/l
- 3.27 Se mezclan 80 g de azúcar con 0,5 kg de agua. Hallar:
 - a) La masa de la disolución.
 - b) La concentración de la disolución expresada en % en masa. Solución. a) 580 g b) 13.8 %
- 3.28 Si representamos los átomos de diferentes elementos de la siguiente forma:

Imagina que tenemos varios recipientes con sustancias gaseosas. Si pudiéramos ver los átomos y moléculas e hiciéramos una fotografía y obtuviéramos algo parecido a las siguientes viñetas:

- a) Clasifica las sustancias de los recipientes anteriores en mezclas o en sustancias puras.
- b) ¿Sabrías escribir la fórmula y el nombre de las sustancias de los recipientes anteriores?
- c) Nombra adecuadamente cada uno de los sistemas anteriores. Recipiente A: tiene una sustancia pura que es el agua; el B...
- 3.29 Dibuja el aspecto que tendría un recipiente con agua y oxígeno disuelto en ella.

Tema 4. 3º ESO. EL ÁTOMO.

CONTENIDOS.

- 1. Discontinuidad de la materia. Pruebas de la existencia de los átomos.
- 2. Teoría atómico molecular de Dalton.
- 3. Materia con carga eléctrica. Dos tipos de carga.
- 4. Modelos atómicos. Modelo atómico de Thomson.
- 5. Experimento de Rutherford. Modelo atómico de Rutherford.
- 6. Estructura del átomo. Núcleo atómico: protones, neutrones.
- 7. Numero atómico, numero másico, isótopos. Representación del núcleo atómico.
- 8. Masa atómica. Calcular la masa atómica de un elemento.
- 9. Isótopos. Número másico.
- 10. Corteza atómica: configuración electrónica. Electrones de valencia. Iones.
- 11. Concepto de elemento químico.
- 12. Metales y no metales. Propiedades
- 13. Sistema periódico de los elementos. Grupos y periodos.

EJERCICIOS. TEMA 4. El átomo.

- 4.1 Escribe un resumen de la teoría atómica de Dalton. (Página 58).
- 4.2 ¿Qué diferencias encuentras entre el modelo atómico de Thomson y el de Rutherford?
- 4.3 Dibuja el modelo atómico de Thomson y explica brevemente como imaginó Thomson el átomo. Página 58
- 4.4 ¿Qué experimento obliga a Rutherford a modificar el modelo de Thomson?. Explícalo
- 4.5 Dibuja el modelo atómico de Rutherford, (o modelo planetario). ¿Cómo se imaginó Rutherford el átomo? Pág 59

	¿Cómo se llama cada una de las partes en la que puede dividirse el átomo? (pag 59) Qué partículas componen los átomos? (pág 59)
4.7 n	Completa: la masa del protón es casi igual a la masa del La masa de los átomos se nide en number que es casi igual a la masa de
4.8	n valor absoluto, la carga del electrón es igual a la carga del Los protones y los neutrones están muy próximos ("apelotonados") en el centro del átomo. ¿Cómo se ama dicha parte del átomo? (pag. 59)
4.9	Dibuja un átomo con 4 protones, 5 neutrones y 5 electrones.
4.10	En el átomo del ejercicio 4.9 ¿Cuál es su nº atómico? ¿nº másico?.
	¿Cuál es el nombre de los elementos que tienen por símbolo: O, H, N, C, S, Fe, He, Ni, Se, Ca, P, Na?. ¿Cuántos neutrones hay en el isótopo de carbono de $A=14\ y\ Z=6?$
4.13	Define los siguientes conceptos: masa atómica y número atómico.
	Copia y completa la siguiente frase: isótopos, son átomos de un elemento que tienen siempre e nismo número de
/ 1E	Pospondo a las siguientes suestiones:

c) ¿Pueden existir dos átomos del mismo elemento que tengan distinto número másico?. d) ¿Cuál es la relación entre la masa del protón y del neutrón? Y ¿entre la masa del protón y la

b) ¿Cuál es el tamaño del núcleo de un átomo comparado con el átomo?.

a) ¿Existe alguna relación entre el número de protones y el número de electrones en un átomo

masa del electrón?

- 4.16 Dibuja un átomo de SODIO 23. ¿Cuántos electrones tiene en la última capa?. Busca los datos necesarios en la tabla periódica.
- 4.17 Dibuja un átomo de potasio. ¿Cuántos electrones tiene en la última capa?
- 4.18 ¿Puede haber dos átomos del mismo elemento con distinto número atómico? ____ ¿Porqué?. ¿Puede haber dos átomos del mismo elemento con distinto número másico? ____ ¿Porqué?.

4.19 Completa la siguiente tabla:

Elemento	símbolo	representación	Z	А	Número de p	N	Número de e
		¹¹⁸ ₅₀ Sn					6
Plomo			82			126	
	Al				13	14	
		$^{1}_{1}H$					

4.20 Un átomo de CI tiene de número atómico 17. Su masa atómica es 35.

Representa el núcleo de ese átomo:

Dibuja un átomo de cloro indicando las partículas que tiene y donde están situadas y el número de electrones de la última capa.

- 4.21 Busca en tu libro cuáles son los isótopos del hidrógeno. (Pág 61) Dibújalos y escribe el símbolo de cada uno de ellos.
- 4.22 ¿Cuántos electrones tiene un átomo cuya estructura electrónica es: (2,8,18,4)? . Si el átomo es neutro eléctricamente, ¿qué número atómico tiene?. Busca en la tabla que elemento es
- 4.23 Cierto átomo tiene configuración electrónica (2,8,7). ¿A qué elemento pertenece? (consulta la tabla periódica).

4.24 Completa la tabla escribiendo las configuraciones electrónicas de los siguientes elementos.

Nombre del elemento	Símbolo	Número atómico	Configuración electrónica
		1	
Nitrógeno	N	7	(2,5)
	Ne		
		15	
	CI		
		20	

4.25 Completa:

1.20 Complete.					
Grupo de eler	mentos	Nº de electrones de valencia.			
Metales alcalinos.	Grupo 1				
Metales alcalinotérreos.	Grupo 2				
Anfígenos.	Grupo 16				
Halógenos.	Grupo 17				
Gases nobles.	Grupo				

- 4.26 Teniendo en cuenta los resultados obtenidos en el ejercicio anterior, ¿cuántos electrones de valencia tendrá un átomo de antimonio (consulta la tabla periódica)? ¿Y uno de calcio? ¿Uno de potasio? ¿Y uno de cloro? ¿Y uno de bromo?
- 4.27 En este ejercicio se trata de memorizar la posición de los primeros 10 elementos de la tabla periódica. Para ello fíjate en la siguiente plantilla muda. Debes ser capaz de dibujarla y rellenarla con los símbolos de los elementos de la tabla periódica que ocupan las casillas.

- 4.28 Calcula la carga de un ión que tiene 13 protones y 10 electrones. Escribe su símbolo.
- 4.29 Calcula la carga de un ion que tiene 34 protones y 36 electrones. Escribe su símbolo.
- 4.30 El hierro es el elemento de número atómico Z=26. ¿Cuántos electrones posee el ion Fe²⁺?
- 4.31 ¿En que ión se convierte fácilmente el cloro? ¿y el bromo? ¿Y el yodo? Tienes que determinar primero cuantos electrones tienen cada uno de ellos en la última capa.
- 4.32 El cloro tiene dos isótopos, ³⁵Cl y ³⁷Cl; con una abundancia en la naturaleza del 75,5 % y un 24,5 % respectivamente. Determina la masa atómica relativa del cloro.
- 4.33 Del neón natural existen dos isótopos, uno de masa atómica relativa 20 y abundancia de un 90 % y otro de masa atómica 22 cuya abundancia es el 10 %. Calcula la masa atómica relativa del neón.
- 4.34 El magnesio tiene tres isótopos de números másicos 24, 25 y 26. La proporción de los dos primeros es del 78,5 % y 10,0 %. Determina la masa atómica relativa del magnesio.
- 4.35 ¿Cuáles de los siguientes elementos tendrán tendencia a formar cationes: flúor, argón, rubidio, azufre, cobre, cinc y nitrógeno. Consulta la tabla periódica.

4.36

nº de protones	nº de electrones	Carga neta	Catión o anión	Símbolo
13	10	+3	catión	Al ³⁺
12	10			
15	18			
11		+1		
				CI ⁻
1	2			
1	0			

Tema 5. 3º ESO. ENLACE QUÍMICO. ATOMOS, MOLECULAS. CRISTALES. FORMULACIÓN QUÍMICA.

CONTENIDOS.

- 1. Las propiedades químicas de los átomos ¿de qué dependen?
- 2. Nombre y símbolo de los elementos más usuales.
- 3. Propiedades de un átomo de metal: nº de e en la última capa, tendencia a perder e, electropositivo, forma iones +. Propiedades de los átomos de no metales.
- Carácter metálico.
- 5. La agrupación de los átomos en la materia. Átomos aislados. Moléculas y cristales.
- 6. Enlace químico. Enlace covalente. Por qué elementos están formados los compuestos covalentes. Ejemplos. Propiedades de esas sustancias
- 7. Cristales iónicos. Por qué están formados. Propiedades de esas sustancias
- 8. Metales. Propiedades de los metales.
- 9. Cuerpo simple o elemento Valencia de un elemento Masa atómica de un elemento.
- 10. Compuesto químico; fórmula. Masa molecular de una sustancia. MOL. Composición centesimal.
- 11. Formulación química: óxidos, hidruros, sales binarias e hidróxidos.

EJERCICIOS. TEMA 5. ATOMOS, MOLECULAS. FORMULACIÓN.

Busca los datos que necesites en el libro y en la tabla periódica: masa atómica, nº de Avogadro,

- 5.1 ¿Qué dos tipos de agrupaciones de átomos pueden existir? (Libro. Pag. 74)
- 5.2 ¿En qué se diferencian las moléculas de un elemento y las de un compuesto?
- 5.3 ¿Cuántos átomos hay en una molécula de amoníaco NH₃?
- 5.4 La fórmula del cloruro amómico es NH₄Cl. Explica qué indica esa fórmula.¿Qué indica el 4 de esa fórmula?.
- 5.5 Escribe la fórmula y el nombre de todos los óxidos de cloro, del yodo y del azufre. (son 11 en total).
- 5.6 Formular:

Nombre	Fórmula	Nombre Fórm	nula
óxido de fósforo(III)		dióxido de silicio	
hidruro de calcio.		hidróxido de mercurio(II)	
Fluoruro de hidrógeno		sulfuro de potasio	
hidróxido de platino(IV)		tricloruro de dihierro.	
Dihidruro de estaño		fluoruro de níquel(II).	
óxido de plata		sulfuro de dihidrógeno	
Cloruro de hidrógeno		agua oxigenada	

- 5.7 Escribe la fórmula y el nombre de todos los hidruros de los metales alcalinotérreos y de los metales alcalinos. (son 12 en total).
- 5.8 Escribe la fórmula y el nombre de todos los hidróxidos del cobre, plomo, zinc, aluminio, hierro, sodio (hay 9 en total).
- 5.9 ESCRIBE EL NOMBRE DE LAS SIGUIENTES SUSTANCIAS:

N_2	Rn	K ₂ O	$AI(OH)_3$	CO	HI	H ₂ S
H ₂ Se	NH_3	CaS	Zn(OH) ₂	NaCl	Cal ₂	HF

5.10 Pon la fórmula:

Nombre	Fórmula	Nombre	Fórmula
Hidróxido de magnesio.		dióxido de disodio	
óxido de níquel(III).		nitrógeno.	
hidróxido de magnesio		cloruro de calcio	
Agua		óxido de fósforo(V)	
Plutonio		dióxido de azufre.	
Sulfuro de hidrrógeno		amoniaco	
cloruro de magnesio.		trióxido de diantimonio.	
Selenuro de hidrogeno		tetrahidróxido de plomo	

5.11 ¿V ó F?

Los no metales son dúctiles y maleables.

Los electrones de la última capa son los que determinan las propiedades de un elemento químico.

Los gases nobles solo reaccionan entre ellos y no con otros elementos.

Una sustancia es maleable si se puede extender en hilos.

Si un átomo de carbono comparte 4 electrones al unirse con otros átomos, deducimos que los átomos de carbono se unen de 4 en 4.

Los gases nobles no reaccionan con otras sustancias.

El Li, Na, K, Rb, Cs, Fr es el grupo de los halógenos.

- 5.12 ¿Cuántos átomos tiene una molécula de agua?.
 - ¿Cuántos átomos tiene una molécula de NaHCO₃?.
 - ¿Y una moléculas de Pb(C₂H₅)₄?
- 5.13 Cierto cristal contiene dos trillones de átomos de aluminio y seis trillones de átomos de cloro. ¿Cuál es la fórmula de la sustancia que lo forma?
- 5.14 Escribe: Nombre, símbolo y valencia de:
 - Los metales alcalinos.
 - Los metales alcalinotérreos.
 - · Los halógenos.
- 5.15 ¿Qué indica la fórmula: C₃ H₈?
- 5.16 El cloruro de sodio (NaCl) se disolverá en agua? ¿Por qué? Conducirá la corriente eléctrica en estado sólido?

¿Y si está disuelto en agua?

- 5.17 Define: molécula, masa molecular.
- 5.18 V o F. Los elementos químicos de un mismo grupo de la tabla periódica tienen:
 - El mismo número de electrones en la última capa.
 - El mismo número de capas de electrones.
 - Propiedades químicas similares y forman compuestos muy parecidos
 - El mismo número atómico.
- 5.19 ¿Cuantos átomos de Fe hay en un mol de átomos de Fe?. ¿Y en 2 mol de átomos de Fe?.

- 5.20 ¿Cuántas moléculas de NH_3 hay en un mol de moléculas de NH_3 ? ¿Y en 2 mol de NH_3 ? ¿Y en 0,5 mol de NH_3 ?
- 5.21 Calcula la masa en gramos de 1 mol de CO₂. Busca las masas atómicas en la tabla periódica.
- 5.22 ¿Cuántas moléculas tendrán 80 gramos de carbonato de calcio (CaCO₃)?
- 5.23 ¿Cuántos átomos tiene una molécula de hidróxido férrico Fe(OH)₃?
- 5.24 Tenemos un recipiente con 80 g de metano. ¿Cuántos moles de metano hay en dicho recipiente?
- 5.25 Un recipiente contiene 308 g de CO₂. Calcula:
 - a) cuántos moles de CO₂ hay en el recipiente.
 - b) cuántas moléculas de CO₂ tenemos dentro de este recipiente.
- 5.26 Si la fórmula del azúcar es: C₁₂ H₂₂ O₁₁, a) ¿Cuántos átomos tiene una molécula de azúcar?. b) ¿Cuántos moles tiene medio kilo de azúcar? c) y ¿cuántas moléculas?
- 5.27 ¿Cuántos átomos tiene una molécula de agua oxigenada? Calcula la masa molecular del agua oxigenada. ¿Cuántos gramos tiene 1 mol de esa sustancia?
- 5.28 Determina la composición centesimal del hidróxido de calcio.
- 5.29 Calcula el tanto por ciento de nitrógeno en el nitrato amónico: NH₄NO₃
- 5.30 ¿Qué sustancias químicas están formadas por redes cristalinas?
- 5.31 ¿Cuántos gramos pesarán 200 billones de moléculas de cal (óxido de calcio)?
- 5.32 ¿Cuántos mol hay en un litro de H₂O?.

Tema 6. 3º ESO. REACCIONES QUÍMICAS.

CONTENIDOS.

- 1. Fenómenos físicos. Fenómenos químicos o reacciones químicas.
- 2. Interpretación macroscópica de la reacción química.
- 3. Reacción química: reactivos y productos.
- 4. Indicios que ponen de manifiesto que se ha producido una reacción química.
- 5. Aspectos energéticos de las reacciones químicas: reacciones exotérmicas y endotérmicas.
- 6. Ley de conservación de la masa. (Lavoisier)
- 7. Ecuación química. Ajuste y representación de ecuaciones químicas. Información que proporciona una ecuación química ajustada.

EJERCICIOS. TEMA 6. REACCIONES QUÍMICAS.

- 6.1 Define: reacción química. Pon 3 ejemplos totalmente diferentes de reacciones químicas.
- 6.2 El hidróxido sódico reacciona con cloruro de hidrógeno para formar cloruro sódico y agua. Escribe la reacción química ajustada indicando cuántos gramos de cloruro de hidrógeno son necesarios para formar 36 gramos de agua.
- 6.3 Si al comprar un alimento indica la etiqueta: "Poder energético por cada 100 gramos, 98 Kc". Explicar lo que quiere decir.
- 6.4 Al quemar el azúcar se produce una reacción química; se obtiene un residuo negro y se desprende humo. Las sustancias obtenidas no se parecen nada a las iniciales. Indica cuales son los reactivos y cuáles los productos.
- 6.5 Cuando 4 g de hidrógeno reaccionan con la cantidad suficiente de oxígeno se producen 36 g de agua. ¿Qué cantidad de oxígeno habrá reaccionado?
- 6.6 Clasifica los siguientes procesos en cambios físicos y Químicos
 - a) calentamos un trozo de hielo hasta que lo derretimos
 - b) añadimos una cucharada de azúcar a un vaso con agua y removemos hasta que el azúcar desaparece de nuestra vista
 - c) un clavo de hierro expuesto a la intemperie se oxida
 - d) introducimos en un recipiente sodio y cloro, obteniendo cloruro de sodio.
 - e) evaporamos el agua de un cazo calentándola.
 - f) machacamos un trozo de tiza hasta reducirla a polvo
 - g) en el interior de nuestro organismo, una cantidad de azúcar se transforma en agua y dióxido de carbono.
 - h) mezclamos un litro de agua con medio litro de alcohol.
- 6.7 Ajusta las siguientes ecuaciones químicas:
 - 1) $N_2 + O_2 \rightarrow NO_2$
 - 2) $O_2 + CO \rightarrow CO_2$
 - 3) $O_2 + Cl_2 \rightarrow Cl_2O$
 - 4) $SO_2 + O_2 \rightarrow SO_3$
 - 5) Na + H₂O \rightarrow H₂ + NaOH

6.8 Escribe las fórmulas y AJUSTA LAS SIGUIENTES REACCIONES:

```
nitrógeno + hidrógeno → amoniaco.

pentaóxido de dinitrógeno + agua → ácido nítrico.

óxido de fósforo(V) + agua → H₃PO₄
```

- 6.9 Escribe y ajusta la ecuación: Cloruro de hidrógeno + monóxido de calcio → dicloruro de calcio + agua. ¿Qué indica esa reacción?.
 - ¿Cuáles son los reactivos y cuáles son los productos?.
- 6.10 La ecuación: 4 H Cl + Fe $_2$ S $_3 \rightarrow 2$ Fe Cl $_2$ + H $_2$ S $_3 \rightarrow 2$ Cumple la ley de Lavoisier?. Razona las respuestas.
- 6.11 Contesta razonadamente:
 - a) En una reacción exotérmica ¿quién tiene más energía, los reactivos o los productos?
 - b) Según la teoría cinética, ¿qué es necesario para que se produzca una reacción química?.
 - c) ¿Qué diferencia hay entre fenómenos físicos y reacciones químicas?
- 6.12 Ajusta las siguientes reacciones:

a)
$$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$$

b)
$$Cl_2 + O_2 \rightarrow Cl_2O_5$$

c)
$$NH_3 \rightarrow N_2 + H_2$$

- 6.13 Escribe todos los indicios que conozcas que ponen de manifiesto que se ha producido una reacción química.
- 6.14 Dada la siguiente reacción: H Cl + Mg → Mg Cl₂ + H₂
 - i) Ajusta la reacción y explica lo que indica.
 - ii) Con 5 moles de HCl ¿cuántos moles reaccionan de Mg?.

Los hidrocarburos son compuestos formados exclusivamente por carbono e hidrógeno; arden en el aire reaccionando con el oxígeno y produciendo dióxido de carbono y agua.

- 6.15 Escribe, ajustada, la reacción de combustión del metano (CH₄), componente fundamental del gas natural. ($CH_4 + O_2 \rightarrow CO_2 + H_2O$)
- 6.16 Escribe y ajusta la reacción de combustión del octano (C₈H₁₈), principal componente de la gasolina.
- 6.17 Escribe, ajustada, la reacción de combustión del butano (C₄H₁₀).