Para saber cuál de las tres identidades hay que aplicar podrías ayudarnos el siguiente algoritmo:

N° de términos	Signos de los términos	Identidad	Descomposición	Ejemplo
2		$x^2 - a^2$	Obtenemos los dos términos, calculando la raíz cuadrada de los términos de la diferencia	$4x^{2} - 9 = (2x - 3) \cdot (2x + 3)$ $\sqrt{4x^{2}} = 2x ; \sqrt{9} = 3$
3	Uno de ellos es negativo $x^2 - 2ax + a^2$	(x - a) ²	Para determinar los dos términos de la resta calculamos la raíz cuadrada de los términos positivos	$4x^{2} - 12x + 9 = (2x - 3)^{2}$ $\sqrt{4x^{2}} = 2x ; \sqrt{9} = 3$
	Todos son positivos $x^2 + 2ax + a^2$	(x + a) ²	En expresiones con una sola variable, calculamos la raíz cuadrada del término de mayor grado y del término independiente	$4x^{2} + 12x + 9 = (2x + 3)^{2}$ $\sqrt{4x^{2}} = 2x ; \sqrt{9} = 3$

Descomponer los siguientes polinomios empleando las identidades notables:

1)
$$4x^2 + 4x + 1$$

3)
$$16x^4 - 1$$

5)
$$16x^4 - 81$$

7)
$$4x^2 + 20x + 25$$

9)
$$9x^2 + 12x + 4$$

11)
$$x^4 - 12x^2 + 36$$

13)
$$a^2 x^4 - a^2 y^4$$

15)
$$x^4 - 6x^2 + 9$$

17)
$$x^2 - 8xy + 16y^2$$

19)
$$4x^2 - 20x + 25$$

21)
$$x^4 + 12x^2 + 36$$

23)
$$x^2 - 4y^2$$

25)
$$x^2 + \frac{1}{2}x + \frac{1}{4}$$

27)
$$9x^2 - x + \frac{1}{36}$$

29)
$$\frac{1}{4} - 9x^2$$

2)
$$9x^2 - 16$$

4)
$$x^4 - 1$$

6)
$$9x^4 - 16$$

8)
$$9x^2 + 6x + 1$$

10)
$$x^4 - 6x^2y + 9y^2$$

12)
$$x^4 - 8x^2 + 16$$

14)
$$9x^2 + 24x + 16$$

16)
$$4x^2 - 9y^2$$

18)
$$9a^2 - 12ab + 4b^2$$

20)
$$9x^4 - 6x^2 + 1$$

22)
$$9x^2 - 6xy + y^2$$

24)
$$x^2 + 6xy + 9y^2$$

$$26) \quad x^4 - x^3 + \frac{1}{4}x^2$$

28)
$$x^2 - xy + \frac{1}{4}y^2$$

30)
$$x^2 - \frac{16}{25}$$

Soluciones

POLINOMIO

DESCOMPOSICIÓN

POLINOMIO

2) $9x^2 - 16$

DESCOMPOSICIÓN

1)
$$4x^2 + 4x + 1 = (2x + 1)^2$$

$$=(2x+1)^2$$

3)
$$16x^4 - 1 = (4x^2 + 1)(2x - 1)(2x + 1)$$

4)
$$x^4 - 1$$

$$= (x^2 + 1)(x - 1)(x + 1)$$

=(3x-4)(3x+4)

5)
$$16x^4 - 81$$
 = $(4x^2 + 9)(2x - 3)(2x + 3)$

6)
$$9x^4 - 16$$

$$=(3x^2-4)(3x^2+4)$$

7)
$$4x^2 + 20x + 25 = (2x + 5)^2$$

$$=(2x+5)^2$$

8)
$$9x^2 + 6x + 1 = (3x + 1)^2$$

$$=(3x+1)^{2}$$

9)
$$9x^2 + 12x + 4 = (3x + 2)^2$$

$$=(3x+2)^2$$

10)
$$x^4 - 6x^2y + 9y^2 = (x^2 - 3y)^2$$

$$=(X-3y)$$

11)
$$x^4 - 12x^2 + 36 = (x^2 - 6)^2$$

$$=(x^2-6)^2$$

12)
$$x^4 - 8x^2 + 16$$

12)
$$x^4 - 8x^2 + 16$$
 = $(x^2 - 4)^2 = (x - 2)^2 (x + 2)^2$

13)
$$a^2 x^4 - a^2 y^4$$

13)
$$a^2 x^4 - a^2 y^4 = a^2 (x^2 + y^2)(x + y) (x - y)$$

14)
$$9x^2 + 24x + 16 = (3x + 4)^2$$

$$= (3x+4)^2$$

15)
$$x^4 - 6x^2 + 9 = (x^2 - 3)^2$$

$$=(x^2-3)^2$$

16)
$$4x^2 - 9y^2$$

$$=(2x-3y)(2x+3y)$$

17)
$$x^2 - 8xy + 16y^2 = (x - 4y)^2$$

$$= (x - 4y)^{2}$$

$$18) \ 9a^2 - 12ab + 4b^2$$

$$= (3a - 2b)^2$$

19)
$$4x^2 - 20x + 25 = (2x - 5)^2$$

21) $x^4 + 12x^2 + 36 = (x^2 + 6)^2$

20)
$$9x^4 - 6x^2 + 1$$

$$=(3x^2-1)^2$$

22)
$$9x^2 - 6xy + y^2$$

$$=(3x-y)^2$$

23)
$$x^2 - 4y^2 = (x - 2y)(x + 2y)$$

24)
$$x^2 + 6xy + 9y^2$$

$$= (x + 3y)^2$$

25)
$$x^2 + \frac{1}{2}x + \frac{1}{4} = \left(\frac{1}{2} + x\right)^2$$

$$=\left(\frac{1}{2}+x\right)^{2}$$

26)
$$x^4 - x^3 + \frac{1}{4}x^2 = \left(\frac{x}{2} + x^2\right)^2$$

$$= \left(\frac{\mathbf{x}}{2} + \mathbf{x}^2\right)^2$$

27)
$$9x^2 - x + \frac{1}{36} = \left(3x - \frac{1}{6}\right)^2$$

$$=\left(3x-\frac{1}{6}\right)^{2}$$

28)
$$x^2 - xy + \frac{1}{4}y^2 = \left(x - \frac{1}{2}y\right)^2$$

$$=\left(x-\frac{4}{5}\right)\left(x+\frac{4}{5}\right)$$

29)
$$\frac{1}{4} - 9x^2$$

29)
$$\frac{1}{4} - 9x^2 = \left(\frac{1}{2} + 3x\right) \left(\frac{1}{2} - 3x\right)$$

30)
$$x^2 - \frac{16}{25}$$