<u>I. CÁLCULO VECTORIAL</u>

COMPONENTES

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$

MÓDULO

$$a=\sqrt{a_x^2+a_y^2+a_z^2}$$

PRODUCTO ESCALAR

$$\vec{a}\vec{b} = ab \cdot cos\alpha = a_x b_x + a_y b_y + a_z b_z$$

$$\cos\alpha = \frac{a_x b_x + a_y b_y + a_z b_z}{ab}$$

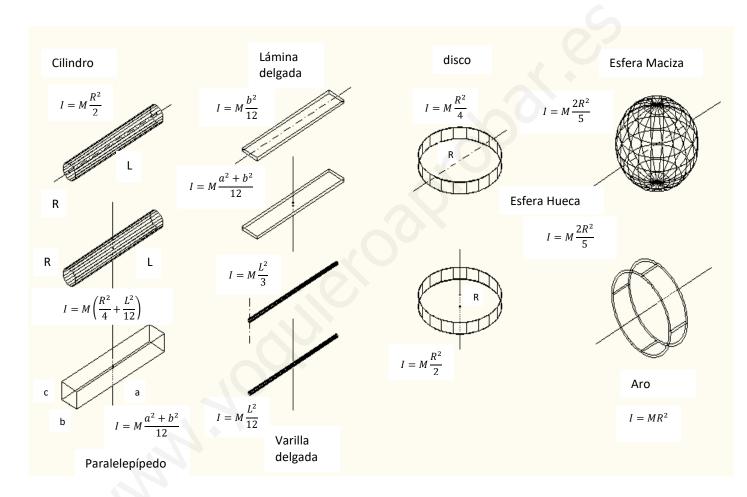
PRODUCTO VECTORIAL
$$|\vec{a} \wedge \vec{b}| = absen lpha \vec{a} \wedge \vec{b} = \begin{vmatrix} \vec{\iota} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$\overrightarrow{a}(\overrightarrow{b}\wedge\overrightarrow{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

II. ANÁLISIS DIMENSIONAL

					DIM
MAGNITUD	DIM	MAGNITUD	DIM	MAGNITUD	
Longitud	L	Velocidad Ang.	T ¹	Momento Iner.	ML ²
Superficie	L ²	Aceleración Ang.	T ²	Intensidad	Α
Volumen	L ³	Fuerza	MLT ²	Carga	AT
Masa	М	Presión	ML ⁻¹ T ²	Potencial	ML ² A ⁻¹ T ³
Densidad	ML ⁻³	Trabajo / energía	ML ² T ²	Campo Elec.	ML ² A ⁻¹ T ³
Tiempo	т	Potencia	ML ² T ³	Resistencia	ML ² A ⁻¹ T ³
Velocidad	LT ⁻¹	Impulso / Mom. Lin.	MLT ¹	Capacidad	ML ² A ⁻¹ T ³
Aceleración	LT ⁻²	Momento Fuerza	ML ² T ²	Viscosidad	ML ² A ⁻¹ T ³

III. DINÁMICA DEL SÓLIDO RÍGIDO


$$\sum \overrightarrow{M} = I \cdot \overrightarrow{\alpha}$$

ECUACIÓN FUNDAMENTAL

$$\sum \overrightarrow{F} \cdot d = I \cdot \overrightarrow{\alpha}$$

MOMENTO DE INERCIA

$$I = m \cdot R^2 \rightarrow \text{masa puntual}$$

RADIO DE GIRO

$$R=\sqrt{\frac{I}{m}}$$

TEOREMA DE STEINER

$$I=I_G+mr^2$$

MOMENTO CINÉTICO E IMPULSO ANGULAR $\overrightarrow{m{L}} = m{I}\overrightarrow{m{\omega}}$

$$\overrightarrow{M}t = I\overrightarrow{\omega}_2 - I\overrightarrow{\omega}_1$$

ENERGÍA DE ROTACIÓN

$$E_{CR} = \frac{1}{2}I\omega^2$$

IV. MOVIMIENTO ARMÓNICO SIMPLE

$$F = -K * \overrightarrow{X}$$

$$T=2\pi\sqrt{\frac{m}{K}}$$

FRECUENCIA $(s^{-1}oHz)V = \frac{1}{r}$

ELONGACIÓN(m) $Y = A sen(\omega * t + \varphi_0)$

$$\omega = \frac{2\pi}{T} = 2 \cdot \pi \cdot v \begin{cases} A = amplitud \\ \omega = pulsación \\ \omega t + \varphi_0 = fase \\ y = elongación \end{cases}$$

$$v = \frac{dy}{dt} = A\omega \cos(\omega * t + \varphi_0)$$

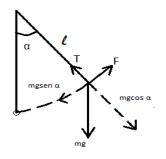
$$v = \omega \sqrt{A^2 - y^2}$$

$$v = \frac{dy}{dt} = A\omega \cos(\omega * t + \varphi_0)$$

$$v = \omega \sqrt{A^2 - y^2}$$

$$a = \frac{d^2 \cdot y}{dt} = -A\omega^2 \operatorname{sen}(\omega \cdot t + \varphi_0)$$

$$a = -\omega^2 \cdot y$$


$\omega \cdot t + \varphi_0$	ELONGACIÓN	VELOCIDAD	ACELERACIÓN	
0°	y = 0	$v = A\omega$	a = 0	
90° (π/2)	y = A	v = 0	$a = -\omega^2 A$	
270° (-π/2)	y = -A	v = 0	$a = \omega^2 A$	

ENERGÍA M.A.S.

$$\mathbf{E}_{\mathbf{p}} = \frac{1}{2} \mathbf{k} x^2 \qquad \qquad \mathbf{E}_{pmax} = \frac{1}{2} \mathbf{k} \mathbf{A}^2$$

$$\mathbf{E}_{\mathbf{c}} = \frac{1}{2}mv^2$$

APLICACIONES PÉNDULO SIMPLE

$$F = -mg \operatorname{sen}\alpha = -kx$$

 \propto pequeño, luego sen $\propto = \propto$

$$-mg \propto = -kx$$

Teniendo en cuenta $x = l \propto$

$$-mg\frac{x}{l}=-kx$$

Finalmente $k = \frac{mg}{l}$

$$T=2\pi\sqrt{rac{l}{g}}$$

V. MOVIMIENTO ONDULATORIO

ELONGACIÓN

$$y = A \cdot sen(\omega t \pm kx + \varphi_0)$$

$$y = A \cdot 2\pi \left(\frac{t}{T} \pm \frac{x}{\lambda}\right)$$

$$-: (\longrightarrow) / +: (\longleftarrow)$$

$$\omega = \frac{2\pi}{T}$$

PULSACIÓN

NÚMERO DE ONDA

$$k = \frac{2\pi}{\lambda}$$

VELOCIDAD DE VIBRACIÓN DE UN PUNTO $~v=\frac{dy}{dt}=A\omega cos~(\omega t\pm kx+\phi)$

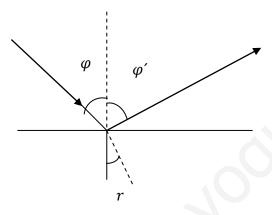
VELOCIDAD DE PROPAGACIÓN

$$V_p = \frac{\lambda}{T} = \frac{\omega}{k} = \frac{s}{t}$$

$$\Delta \varphi = \varphi_2 - \varphi_1 = (\omega \cdot t_2 - kx_2) - (\omega \cdot t_1 - kx_1)$$

$$\checkmark$$
 En un instante $(t_1 = t_2)$ \Longrightarrow $\Delta_{\varphi} = k \cdot (x_2 - x_1)$

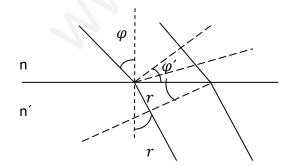
$$\checkmark$$
 En un instante $(x_1 = x_2)$ \Longrightarrow $\Delta_{\varphi} = \omega \cdot (t_2 - t_1)$


ENERGIA
$$E=2\cdot m\cdot \pi^2\cdot \frac{A^2}{T^2}=\frac{1}{2}\cdot m\cdot \omega^2\cdot y^2+\frac{1}{2}\cdot m\cdot v^2$$

INTENSIDAD, AMPLITUD Y RESISTENCIA
$$\frac{i_1}{i_2} = \frac{A_1^2}{A_2^2} = \frac{R_1^2}{R_2^2}$$

REFLEXIÓN

$$\varphi = \varphi'$$


 $\varphi =$ ángulo de incidencia $\varphi' =$ ángulo de reflexión

Fenómeno que se produce cuando una onda plana propagándose en un medio homogéneo, incide sobre una superficie plana reflectante, continuando su propagación por el mismo medio.

REFRACCIÓN

$$\frac{sen\varphi}{sen\varphi'} = \frac{v_1}{v_2} = \frac{n'}{n}$$

Fenómeno originado cuando un frente de onda que se propaga pro un medio con velocidad v_1 , pasa a propagarse en otro medio distinto con velocidad v_2 , modificando su longitud de onda y dirección de propagación pero manteniendo su frecuencia.

DIFRACCIÓN

TAMAÑO OBJETO O RANURA

- **Ο MUCHO MAYOR QUE Λ**
- **Ο MUCHO MENOR QUE Λ**

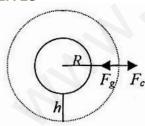
Cambio de dirección que experimenta una onda en su propagación en virtud del cual la onda bordea los obstáculos o atraviesa pequeñas ranuras.

- NO HAY DIFRACCIÓN
- HAY DIFRACCIÓN. SE HA RECONSTRUIDO EL FRENTE DE ONDA TRAS EL OBSTÁCULO

VI. CAMPO GRAVITATORIO.

DEFINICIÓN "Existe un campo gravitatorio en una región del espacio si una masa colocada en dicha región experimenta una fuerza"

FUERZA
$$F = G \cdot \frac{M \cdot m}{r^2}$$


FUERZA
$$F = G \cdot \frac{M \cdot m}{r^2}$$
 $(G = 6, 67 \cdot 10^{-11} \frac{Nm^2}{kg^2})$

INTENSIDAD
$$g = \frac{F}{m} = G\frac{M}{r^2}$$

ENERGÍA POTENCIAL
$$E_p = -G \frac{M \cdot m}{r}$$

POTENCIALV =
$$-G\frac{M}{r}$$

SATÉLITES

R: Radio del Planeta Considerado.

r: distancia desde el centro del planeta hasta el punto considerado.

$$\bigcirc \ \ \text{VELOCIDAD DE ESCAPE:} v_e = \sqrt{\frac{2\text{GM}}{R}}$$

$$\circ$$
 velocidad de orbita: $v_{orbital} = \sqrt{rac{G \cdot M}{r}}$

O PERIODO DE REVOLUCIÓN:

$$T = \sqrt{\frac{r^3 \cdot 4 \cdot \pi^2}{G \cdot M}} = 2 \cdot \pi \sqrt{\frac{r^3}{G \cdot M}}$$

O 2º LEY DE KEPLER: $r_a v_a = r_p v_p$

$$\bigcirc$$
 3º LEY DE KEPLER: $rac{T^2}{R^3} = rac{4\pi^2}{GM} = cte$

$$\begin{split} \text{ENERG\'A} \;\; E &= E_p + E_c \begin{cases} E_p = -G \cdot \frac{M \cdot m}{r} \\ E_c &= \frac{1}{2} m v^2 \end{cases} \qquad \qquad E = -\frac{1}{2} \cdot \textit{G} \cdot \frac{\textit{M} \cdot \textit{m}}{r} \end{split}$$

VII. CAMPO ELÉCTRICO

DEFINICIÓN "Existe un campo eléctrico en una región del espacio si una carga eléctrica colocada en dicha región experimenta una fuerza"

FUERZA
$$F = K \frac{Q \cdot q}{R^2}$$
 $K = 9 \cdot 10^9 \frac{Nm^2}{C^2}$

INTENSIDAD
$$E = K \frac{Q}{R^2} = \frac{F}{q}$$

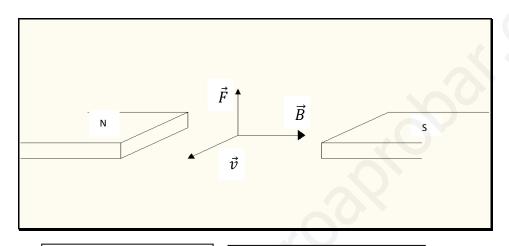
ENERGÁ POTENCIAL
$$E_p = K \frac{Q \cdot q}{R}$$
 POTENCIAL $V = K \frac{Q}{R}$

ENERGÍA CINÉTICAE
$$_c = Q \cdot (V_B - V_A) = \frac{1}{2} m v^2$$

VIII. ELECTROMAGNETISMO

CAMPO MAGNÉTICO Un imán o una corriente eléctrica perturban el espacio que les rodea dando lugar a un campo magnético. Este campo magnético se representa mediante líneas de fuerza, las cuales:

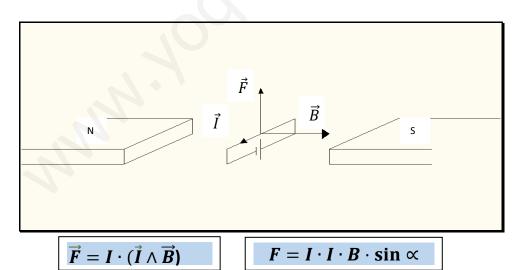
- 1. Entran por el PN y salen por el PS.
- 2. Son cerradas. (imposible separar los polos).
- 3. Circunferencias concéntricas al conductor que crea el campo
- 4. Las fuerzas magnéticas aparecen ligadas a cargas en movimiento.

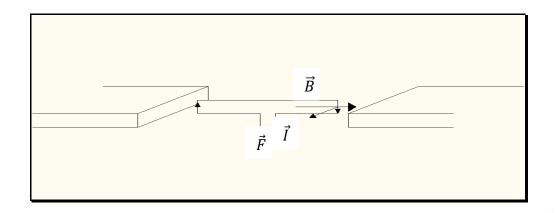

FLUJO $\Phi = \vec{B} \cdot \vec{S} \cdot \vec{$

CONSTANTE ELECTROMAGNETICA $K = \frac{\mu_0}{4\pi} = 10^{-7} \frac{N}{A^2}$

- $\begin{array}{ll} \bigcirc & \mu_0 = permeabilidad\ magn\'etica\ del\ vacio \\ \bigcirc & \mu' = permeabilidad\ magn\'etica\ del\ vacio \\ \bigcirc & \mu = \mu' \cdot \mu_0 = permeabilidad\ magn\'etica\ absoluta \end{array}$

FUERZA EJERCIDA SOBRE

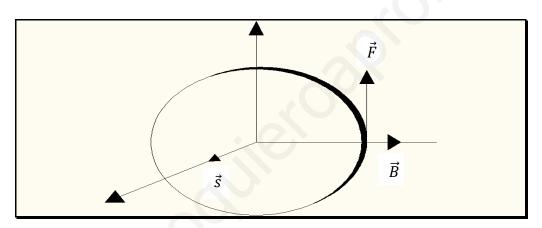

O CARGA MÓVIL: (LEY DE LORENTZ)


$$\overrightarrow{F} = q \cdot (\overrightarrow{v} \wedge \overrightarrow{B})$$

$$F = q \cdot v \cdot B \cdot \sin \propto$$

O CORRIENTE RECTILÍNEA: (1ª LEY DE LAPLACE)

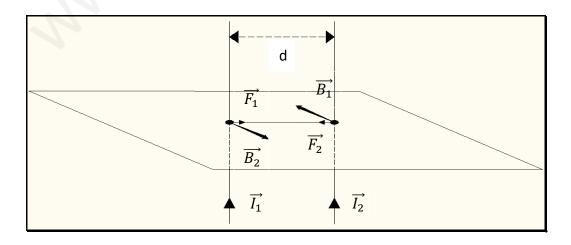
$$\circ$$
 ESPIRA RECTANGULAR: $\sum \overrightarrow{F} = \mathbf{0}$



$$\overrightarrow{F} = N \cdot I \cdot (\overrightarrow{S} \wedge \overrightarrow{B})$$

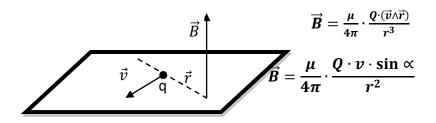
$$M = N \cdot I \cdot S \cdot B$$

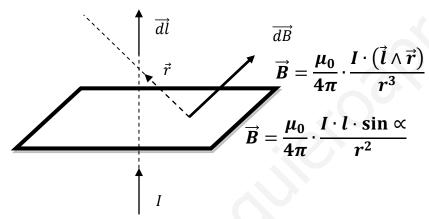
(Momento magnético $\vec{m} = N \cdot I \cdot \vec{S}$)


 \circ ESPIRA CIRCULAR: $\sum ec{F} = 0$

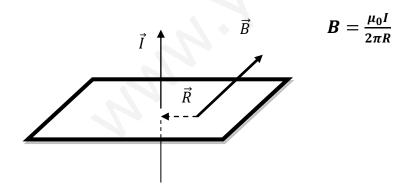
$$\overrightarrow{F} = N \cdot I \cdot (\overrightarrow{S} \wedge \overrightarrow{B})$$

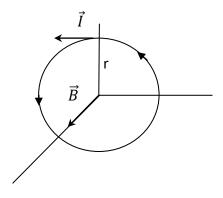
$$M = N \cdot I \cdot S \cdot B$$

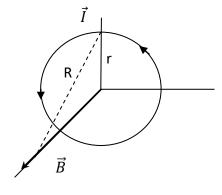

O CORRIENTES PARALELAS:


$$F = \pm \frac{\mu}{4\pi} = \pm \frac{2I_1I_2}{d}$$
 (+ mismo sentido/ - sentido opuesto)

INDUCCIÓN MAGNÉTICA CREADA POR

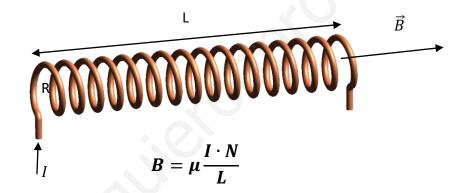

O CARGA MÓVIL


O ELEMENTO CORRIENTE


O CORRIENTE RECTILÍNEA

O ESPIRA CIRCULAR

Centro



Eje

$$B=\mu\frac{I}{2r}$$

$$B=\mu\frac{I\cdot r^2}{2R^3}$$

O SOLENOIDE

IX. INDUCCIÓN ELECTROMAGNÉTICA

FUERZA ELECTROMOTRIZ INDUCIDASe origina al variar el flujo magnético a través de un circuito cerrado.

- \circ Ley de faraday: $oldsymbol{arepsilon} = -rac{\Delta oldsymbol{\Phi}}{\Delta oldsymbol{t}} \cdot oldsymbol{N}$
- O F.E.M. CONDUCTOR MÓVIL: $\varepsilon = B \cdot l \cdot v \cdot \sin \alpha$
- \circ F.E.M ESPIRA GIRATORIA O BOBINA: $\begin{cases} arepsilon = N \cdot B \cdot S \cdot \omega \cdot \sin \omega t \\ \omega = 2\pi f = rac{2\pi}{T} \end{cases}$

CORRIENTE INDUCIDA El sentido de la corriente inducida es tal que el campo electromagnético creado por ella se oponga a las causas que la produjeron. (LEY DE LENZ).

AUTOINDUCCIÓN Fenómeno en virtud del cual una corriente de intensidad variable (principal) crea, en su mismo circuito, otra corriente auto inducida o extracorriente.

$$m{arepsilon} = -rac{\Delta \Phi}{\Delta t} = -m{L} rac{\Delta l}{\Delta t}$$
 Solenoide: $m{L} = m{\mu} rac{N^2 \cdot S}{l}$ (Henrios)

ENERGÍA ALMACENADA POR AUTOINDUCCIÓN $\omega = \frac{1}{2}L \cdot I^2$ INDUCCIÓN MUTUA

O BOBINAS CON EL MISMO NÚCLEO:

$$\varepsilon = -M \cdot \frac{\Delta I}{\Delta t} = -\mu \frac{SN_pN_s}{l} \cdot \frac{\Delta I}{\Delta t} = -N_{s/p} \cdot \frac{\Delta \Phi_{p/s}}{\Delta t}$$

M Inductancia mutua (Henrios)

$$\circ$$
 Bobinas con distinto núcleo: $M=rac{N_s\Phi_s}{I_p}=rac{N_p\Phi_p}{I_s}$

1. F.E.M. CONDUCTOR 1º:
$$oldsymbol{arepsilon}_p = -oldsymbol{M} rac{\Delta l_s}{\Delta t}$$

2. F.E.M. CONDUCTOR 2º:
$$oldsymbol{arepsilon}_s = - oldsymbol{M} rac{\Delta l_p}{\Delta t}$$

TRANSFORMADORES:
$$\frac{\varepsilon_s}{\varepsilon_p} = \frac{N_s}{N_p} = \frac{I_p}{I_s}$$

X. NATURALEZA DE LA LUZ

ENERGÍA Según la hipótesis de Plank le energía emitida por un cuerpo negro no es continua, sino discreta, formada por "quantos" de energía de determinada frecuencia.

$$E = h \cdot v$$
 $v = frecuencia\left(v = \frac{1}{T}\right)$

DATOS DE INTERÉS

$c = 3 \cdot 10^8 m/_{\rm S}$	$h = 6.63 \cdot 10^{-34} J \cdot s$
$1\dot{\Delta} = 10^{-10}m$	$1nm = 10^{-9}m$
$1eV = 1.6 \cdot 10^{-19}J$	$m_e = 9.1 \cdot 10^{-31} kg$

EFECTO FOTOELÉCTRICO Propiedad que presentan algunos metales de emitir electrones cuando se les irradia con luz de frecuencia adecuada.

Energía suministrada= Trabajo de extracción + Energía cinética

$$E = E_0 + E_c$$

$$h \cdot v = h \cdot v_0 + \frac{1}{2} m_e v^2 \left(v = \frac{c}{\lambda} \right)$$

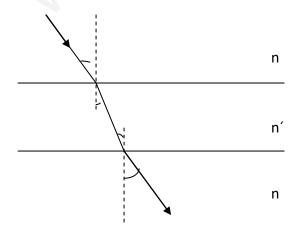
$$E < E_0$$
 no se da efecto fotoeléctrico

$$E > E_0$$
 existe efecto fotoeléctrico

HIPÓTESIS DE BROGLIE Sugiere que toda partícula posee una onda asociada, cuyaλviene dada por:

$$\lambda = \frac{h}{mv}$$

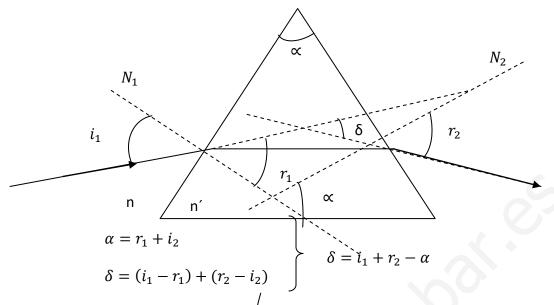
PRINCIPIO DE INCERTIDUMBRE DE HEISEMBERG De la naturaleza dual de la materia y la radiación se desprende que es prácticamente imposible realizar medidas simultáneas de la posición y la velocidad de una partícula con precisión infinita.

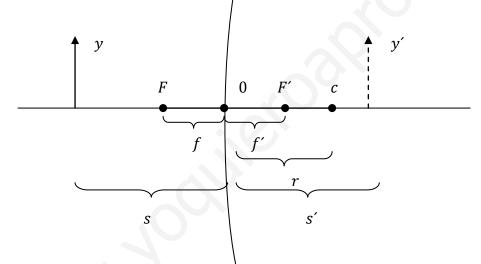

$$\Delta_x \cdot \Delta_p \geq \frac{h}{4\pi}$$

XI. ÓPTICA GEOMÉTRICA

SISTEMA ÓPTICO Aquel a través del cual puede pasar la luz, formado por un conjunto de superficies que separan medios con distinto índice de refracción.

LEY DE SNELL (REFRACCIÓN)
$$\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$


O LÁMINAS PARALELAS:


Reflexión total ángulo límite

Ion total angulo limite
$$R=90^\circ$$
 $\sin r=1$ $\sin i_L=\frac{n_2}{n_1}$ $R=90^\circ$

O PRISMA:

ELEMENTOS DE UN SISTEMA ÓPTICO SIGNOS como en los ejes cartesianos XY

F	Foco objeto	f	Distancia focal
F'	Foco imagen	f'	Distancia focal
С	Centro de curvatura	r	Radio de curvatura
S	Distancia objeto	y	Tamaño objeto
s′	Distancia imagen	y'	Tamaño imagen

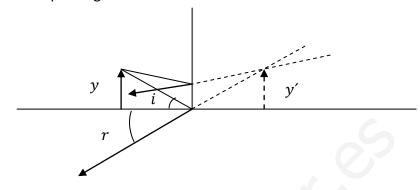
ESPEJOS

O ESPEJOS PLANOS:
$$S = S'$$

$$y = y'R = \infty$$

iguales

$$\bigcirc \quad \text{ESPEJOS ESFÉRICOS:} \frac{1}{s'} + \frac{1}{s} = \frac{2}{r}$$

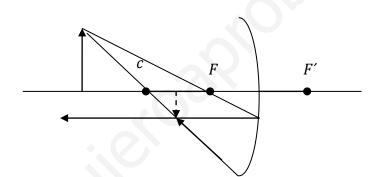

$$\bigcirc \ \ \text{AUMENTO} \frac{y^{'}}{y} = -\frac{s^{'}}{s}$$

MARCHAS DE RAYOS EN ESPEJOS

O ESPEJO PLANO:

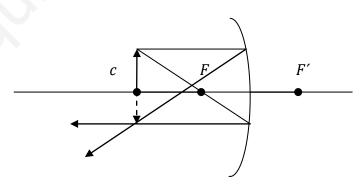
No se cortan los rayos sino sus prolongaciones

DERECHA IGUAL VIRTUAL

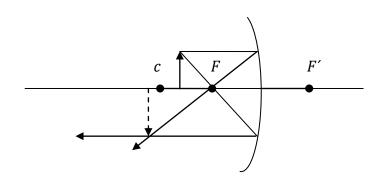


O ESPEJO CONCAVO

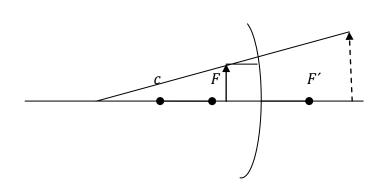
Los rayo que pasan por los focos F o F´, salen paralelos al eje. Los rayos que pasan por el centro de curvatura, c, no se desvían.


s > 2f:

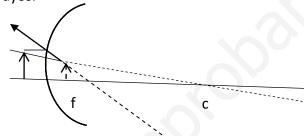
INVERTIDA MENOR REAL


$$s = 2f$$
:

INVERTIDA MENOR REAL


$$2f > s > f$$
:

INVERTIDA MAYOR REAL


DERECHA MAYOR VIRTUAL

O ESPEJO CONVEXO

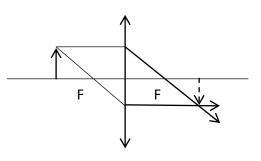
 Mismas normas que para los espejos cóncavos pero se cortan Prolongaciones de los rayos.

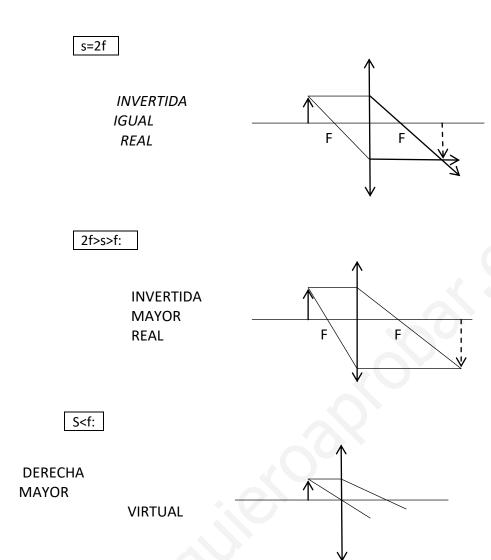
DERECHA MENOR VIRTUAL

LENTES DELGADAS

$$\circ \quad \textbf{ECUACIÓN} \frac{1}{S} - \frac{1}{S} = \frac{2}{r} = \frac{1}{f^{:}}$$

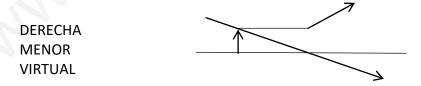
$$\circ \quad \text{AUMENTO } \frac{Y}{Y} = \frac{S}{S}$$


MARCHAS DE RAYOS EN LENTES DELGADAS


LENTE CONVERGENTE

- Los rayos que pasan por los focos salen paralelos al eje.
- Los rayos que pasan por el centro de la lente no se desvían.

s>2f:


INVERTIDA MENOR REAL

O LENTE DIVERGENTE

■Mismas normas para el comportamiento de los rayos que en las lentes Convergentes.

O SISTEMAS DE LENTES

■Considero la imagen de una como objeto de la siguiente.

XII. FÍSICA NUCLEAR

RADIACTIVIDAD

- o **RAYOS A** formados por núcleos de Helio (He^{2+} . a^4)
- o **RAYOS** β formados por e.
- o RAYOS G formados por fotones muy energéticos

LEY DE DESINTEGRACIÓN

$$N = N_{o.}e^{KI}$$
 $K = \frac{n^{o.} \ desintegraciones}{\acute{a}tomos \times unidad \ de \ tiempo}$

$$L\left(\frac{N_0}{N}\right) = KtI. ci = 3.7 \times 10^{\circ \circ desint.}/_s = 3.7 \times 10^{10} Bq$$

- \circ PERIODO DE SEMIDESINTEGRACIÓN $t_{1/2}=rac{ln2}{K}$
- \circ VIDA MEDIA $\tau = \frac{I}{\kappa}$

NÚCLEO ATÓMICO

$$Z \longrightarrow N^{\circ}$$
 atómico $\longrightarrow N^{\circ}$ protones
 $A \longrightarrow N^{\circ}$ másico $\longrightarrow N^{\circ}$ protones + N° neutrones

- o ISÓTOPOS=Z =A /
- o **ISÓTONOS**=Z /=A (=Nº neutrones)
- ISOBAROS=Z /=A

ENERGÍA DE LIGADURA "Energía desprendida al formarse un núcleo a partir de las partículas elementales que lo componen".

- o **DEFECTO DE MASA** $\Delta m = m_{n\'ucleo} \sum m_{particula}$ E= Δ m c^2
- O **DEFECTO DE MASA POR NUCLEÓN:** $\frac{\Delta m}{A} \frac{E}{A} = \frac{\Delta mc^2}{A}$ I.N.m.a=931,5.MeV

REACCIÓNES DE DESINTEGRACIÓN

O DESINTEGRACIÓN A: ${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}X + {}_{2}^{4}a$

$$_{Z}^{A}X \rightarrow _{Z+1}^{A}X + _{-1}^{0}e^{-}.(electr\'{o}n)$$

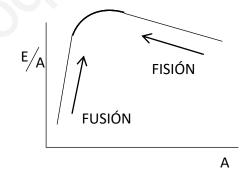
DESINTEGRACIÓN B:

$$_{Z}^{A}X \rightarrow _{Z-1}^{A}X + _{+1}^{0}e^{+}.(positron)$$

DESINTEGRACIÓN $\Upsilon:_Z^A X^*_{(excitado)} \to _Z^A X + Y...(energía)$

$${}_{Z}^{A}X + {}_{2}^{4}a \rightarrow {}_{0}^{1}n + {}_{Z+2}^{A+3}X$$
 ${}_{Z}^{A}X^{*} \rightarrow {}_{Z-1}^{A}X + {}_{+1}^{0}e^{+} + Y$

RADIOACTIVIDAD ARTIFICIAL:


$${}_{Z}^{A}X^{*} \rightarrow {}_{Z-1}^{A}X + {}_{+1}^{O}e^{+} + Y$$

FISIÓN NUCLEAR

"Rotura de un núcleo pesado en otros más ligeros por bombardeo con neutrones".

FUSIÓN NUCLEAR

"Unión de núcleos ligeros, de baja energía de enlace, produciendo un núcleo más pesado, de mayor energía de ligadura por nucleón".

XIII. RELATIVIDAD

CONCEPTO DE ESPACIO

"Entidad extensa que contiene todos los objetos y sucesos".

CONCEPTO DE TIEMPO

"Proceso que engloba la sucesión de todos los actos particulares que afectan a un sistema".

SISTEMAS DE REFERENCIA

- o **INERCIAL** en reposo o dotado de M.R.U.
- o NO INERCIAL: dotado de aceleración.
- O DILATACIÓN DEL TIEMPO $T = \frac{T}{\sqrt{1 \frac{V^2}{C^2}}}$
- O MASA RELATIVISTA $m = \frac{m^{'}}{\sqrt{1 \frac{V^{2}}{C^{2}}}}$

$$E = mc^2 = E_e + m \cdot c^2$$

ENERGÍA RELATIVISTA

$$E_e = (m - m')c^2$$

POSTULADOS DE EISTEIN

- 1) "Todas las leyes de la naturaleza deben ser las mismas para todos los observadores inerciales, moviéndose con velocidad constante unos respecto a otros".
- 2) "La velocidad de la luz es independiente del movimiento relativo de la fuente luminosa y de los observadores inerciales".