1	V	0	7	A	

Nombre			

PROBLEMA 1°.- (0'75 puntos) Calcula el valor de las siguientes potencias:

a)
$$2^4 =$$

b)
$$(-2)^3 =$$

c)
$$-2^4 =$$

b)
$$(-2)^3 =$$
 c) $-2^4 =$ d) $(-5)^2 =$

e)
$$7^{-1} =$$

f)
$$(-7)^{-2}$$
 =

g)
$$-3^{-2} =$$

e)
$$7^{-1} =$$
 f) $(-7)^{-2} =$ g) $-3^{-2} =$ h) $(-2)^{-3} =$

i)
$$\left(-\frac{3}{2}\right)^2 =$$

$$(\frac{4}{3})^{-1}$$

i)
$$\left(-\frac{3}{2}\right)^2 =$$
 j) $\left(\frac{4}{3}\right)^{-1} =$ k) $\left(-\frac{2}{3}\right)^{-3} =$ l) $\left(-\frac{2}{3}\right)^{-2} =$

1)
$$\left(-\frac{2}{3}\right)^{-2} =$$

PROBLEMA 2°. (1 punto) Utilizando las propiedades de las potencias simplifica las siguientes expresiones. Dar el resultado con exponente positivo.

a)
$$\frac{(3^{-3})^{-4} \cdot (3^2)^{-3}}{(3^6 \cdot 3^{-3})^4} =$$

b)
$$\left(\frac{3}{7}\right)^4 \cdot \left[\left(\frac{3}{7}\right) : \left(\frac{3}{7}\right)^{-2}\right]^{-3} =$$

PROBLEMA 3º. (0'5 puntos) Clasifica y calcula la fracción generatriz del número 3'8 .

PROBLEMA 4º.- (1 punto) Realiza las siguientes operaciones:

a)
$$\left(\frac{5}{6} - \frac{1}{5} - \frac{3}{10}\right) : \left(\frac{3}{5} - \frac{1}{2}\right) =$$

b)
$$\left(3-\frac{1}{3}\right)^2 \cdot \left(\frac{1}{6}+1\right)^{-2} =$$

PROBLEMA 5º. (**0'5 puntos**) Escribe en forma científica los números 8.340.000.000 y 0'000456

PROBLEMA 6°.-(0'75 puntos) Sea el conjunto de números mayores que menos tres y menores o igual que tres cuarto.

- a) Representación en la recta numérica y escribe el intervalo. ¿Qué tipo de
- b) Escribe todos los números enteros que se encuentre en el intervalo

PROBLEMA 7º. (0'5 puntos) Completa la tabla, dando las aproximaciones del número.

	<u> </u>	, I
2'5078156	Centésimas	Diezmilésimas
Truncamiento		
Redondeo		

PROBLEMA 8°. (1 punto) Calcula el valor numérico de los siguientes radicales, si es posible. En caso contrario escribe "no existe".

$\sqrt{36}$ =	$\sqrt[3]{27} =$	$\sqrt[3]{-1} =$	$\sqrt[6]{-1} =$
$\sqrt[4]{2^{12}} =$	$\sqrt{7^8} =$	$(16)^{\frac{1}{4}} =$	$(7^{12})^{\frac{1}{3}} =$

PROBLEMA 9°. (2 puntos) Calcula y simplifica

$\sqrt{5} \cdot \sqrt[6]{5} =$	$\frac{\sqrt[10]{5^3}}{\sqrt[5]{5}} =$	$\sqrt[3]{\sqrt[4]{2^3}} =$
$\left(\sqrt[3]{2}\right)^6 =$	$\sqrt[3]{2^2 \cdot \sqrt[5]{2}} =$	$\frac{\left(\sqrt{5}\right)^3 \cdot \sqrt[6]{5}}{\sqrt[4]{5}} =$

PROBLEMA 10°. (1 punto) Aplicando las propiedades notables, simplifica las siguientes expresiones:

a)
$$(2\sqrt{5} - \sqrt{3})^2 =$$

b) $(2\sqrt{5} + \sqrt{3})(2\sqrt{5} - \sqrt{3}) =$

PROBLEMA 12°. (1 punto) Realiza las siguientes operaciones:

a)
$$(5\sqrt{2} - \sqrt{3})(\sqrt{2} + 3\sqrt{3}) =$$

b)
$$\sqrt{3} - 3\sqrt{12} + 2\sqrt{27} - 4\sqrt{75} =$$