PREGUNTA 1.-

a) Resuelve gráficamente el siguiente sistema de inecuaciones:

$$x + 2y \le 8$$

$$x + y \ge 5$$

$$x - 5y \le 0$$

b) Halla las soluciones de la siguiente inecuación y represéntalas en la recta real:

$$\frac{x^2 + 4x + 4}{x^2 - 1} < 0$$

PREGUNTA 2.- Cierta empresa ha observado que los ingresos por ventas están estrechamente relacionados con el gasto asignado a publicidad y ha recogido algunos datos de años anteriores en una tabla:

Años	2005	2006	2007
Gasto en publicidad (x 1000€)	1	3	5
Ingresos (x 1000€)	4	26	64

- a) ¿Qué tipo de interpolación es más conveniente para reflejar las variaciones en los gastos y los ingresos?
- b) Calcula mediante interpolación qué ingresos se esperan con unos gastos en publicidad de 9000€.
- c) Si se quieren obtener unos ingresos de 100000€, ¿qué gasto en publicidad hay que realizar?

PREGUNTA 3.- Sea la función:

$$f(x) = \begin{cases} -2x - 3 & \text{si } x < -2 \\ -x^2 + 5 & \text{si } -2 \le x \le 2 \\ 2x - 4 & \text{si } x > 2 \end{cases}$$

- a) Calcula el dominio de f(x)
- b) Calcula f(-4), f(-2), f(0), f(2) y f(3)

PREGUNTA 4.- Halla las asíntotas de la función: $f(x) = x + 1 + \frac{2}{x-1}$

PREGUNTA 5.- Calcula los números a y b para que sea continua en toda la recta real la función:

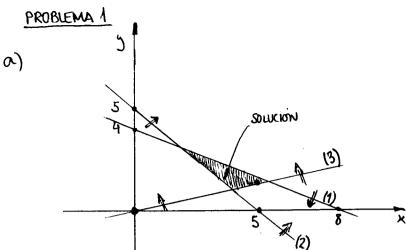
$$f(x) = \begin{cases} ax & si \quad x \le 2 \\ bx + 1 & si \quad 2 < x \le 4 \\ x - a & si \quad x > 4 \end{cases}$$

PREGUNTA 6.- Aplicando la definición de derivada, obtén la derivada de $f(x) = \sqrt{x}$

Calificaciones:

PREGUNTA	PUNTUACIÓN		
1	a) 1 punto b) 1,5 puntos		
2	1,5 puntos		
3	1 punto (0,5 puntos por apartado)		
4	2 puntos		
5	1,5 puntos		
6	1,5 puntos		

Sólo se valorarán aquellas respuestas que estén debidamente justificadas.



(1)	V198	×	Y
1.1	x+25=8	0	4
		8	0

$$O(0,0): 0+2.0=0 \le 8$$

$$(2) \times + y = 5 \qquad \frac{\times | y|}{0 | 5|}$$

(3)
$$x-5y=0$$
 $\frac{x}{0} = 0$ $\frac{x}{5} = 0$

b)
$$\frac{x^2+4x+4}{x^2-1}=\frac{(x+2)^2}{(x+1)(x-1)}<0$$

$$x \in (-1,+1)$$

$$x \in (-1,+1)$$

$$x = \pm 1$$

$$P(3.3)$$
: $3-5.3=-12.40$

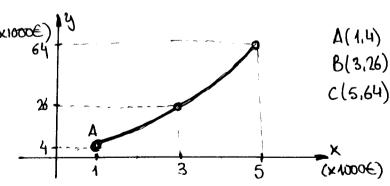
	-60 -	-1 -	+1	+∝
(x+2) ²	+	+	+	
(x+1)		+	+	
(X-I)		_	+	
(x+1)(x-1)	+		+	
$\frac{(x+2)^2}{(x+1)(X-1)}$	+		+	
		1		-1

PROBLEMA 2

a) los gastos crecen a ranón de 2000€ al año de forma constante ⇒ interpolación LINEAL.

les ingrenos crecen 22000€ de 2005 a 2006 y 38000€ de 2006 a 2007 por lo tanto no es lineal => INTERPOLACIÓN CUADRÁTICA.

b) Ingresos vs Gastos (x1000€) 19 Sean Itastos = x] Ingresos = y)



Parábola: $y=ax^2+bx+c$

$$\frac{y=2x^2+3x-1}{\text{Por lo tanto, 2i } x=9 \quad (90006)}$$

$$3=2.81+3.9-1=188$$

c) Si
$$y = 100$$
 $\Rightarrow 100 = 2x^2 + 3x - 1$;
 $2x^2 + 3x - 101 = 0$
 $b = 3$
 $c = -101$ $Y_{1,2} = \frac{-3 + \sqrt{9 - 4(2)(-101)}}{4} = \frac{-3 + \sqrt{817}}{4} = \frac{-3 + \sqrt{817}}{4}$
NO TIENE SENDING

PROBLEMA 3

a)
$$f(x) = \begin{cases} -2x-3 & \text{si } x < -2 \longrightarrow \text{Es una recta} \Rightarrow \text{Dominio} & \mathbb{R} \\ -x^2+5 & \text{si } -2 < x < 2 \longrightarrow \text{Parabola} \Rightarrow & \text{n} & \text{n} & \mathbb{R} \\ 2x-4 & \text{si } x > 2 \longrightarrow \text{Recta} \Rightarrow & \text{n} & \text{n} & \mathbb{R} \end{cases}$$

El dominio de f : D(f)=R

b)
$$f(-4) = -2(-4)-3 = +8-3 = +5$$

 $f(-2) = -(-2)^2 + 5 = -4+5 = +1$
 $f(0) = -0^2 + 5 = +5$
 $f(2) = -2^2 + 5 = -4+5 = +1$
 $f(3) = 2\cdot 3 - 4 = 6 - 4 = +2$

PROBLEMA 4 :
$$f(x) = x + 1 + \frac{2}{x - 1}$$

• Asintotas housentales:
$$\lim_{x\to\infty} f(x) = \infty$$
 NO

• Asintotas verticales:
$$\lim_{x\to 1} \left(x+1+\frac{2}{x-1}\right) = 1+1+\frac{2}{-0} = \infty$$

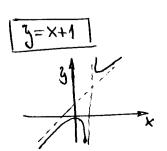
L. laterales
$$\lim_{X \to A^{+}} f(x) = 1+1+\frac{2}{\to 0^{-}} = -\infty$$

 $\lim_{X \to A^{+}} f(x) = 1+1+\frac{2}{\to 0^{+}} = +\infty$

· As. oblicuan: y=mx+n

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \left(1 + \frac{1}{x} + \frac{2}{x^2 - x} \right) = 1 + 0 + 0 = 1$$

$$n = \lim_{x \to \infty} \left[f(x) - mx \right] = \lim_{x \to \infty} \left(x + 1 + \frac{2}{x - 1} - x \right) = 1 + 0 = 1$$



PROBLEMA 5

$$f(x) = \begin{cases} ax & si \times 42 \\ bx+1 & si \times 44 \\ x-a & si \times 4 \end{cases}$$

Condición de continuidad en
$$x=2$$
: $\lim_{x\to 2^{-}} f(x) = \lim_{x\to 2^{+}} f(x) = f(2)$

$$\lim_{x \to 2^{-}} f(x) = a \cdot 2 = 2a$$

$$\lim_{x \to 2^{+}} f(x) = b \cdot 2 + 1 = 2b + 1$$

$$f(2) = 2a$$

$$2a = 2b + 1$$

$$\lim_{x \to 4^{-}} f(x) = 4 + 1$$
 $\lim_{x \to 4^{+}} f(x) = 4 - a$
 $\lim_{x \to 4^{+}} f(x) = 4 \times 1$

$$2a-2b=1$$

$$a+4b=3$$

$$2a-2b=1$$

$$-2a-8b=-6$$

$$-10b=-5 \Rightarrow (b=\frac{1}{2}) \Rightarrow 2a-1=1 \Rightarrow (a=1)$$

PROBLEMS 6

$$f(x) = Ix \implies f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{Ix+h - Ix}{h} = \left[\frac{0}{0}\right]$$

$$= \lim_{h \to 0} \frac{(Ix+h - Ix)(Ix+h + Ix)}{h(Ix+h + Ix)} = \lim_{h \to 0} \frac{x+h - x}{h(Ix+h + Ix)} = \lim_{h \to 0} \frac{I(x+h) - Ix}{h(Ix+h + Ix)} = \lim_{h \to 0} \frac{I(x+h) - Ix}{h(Ix+h) - Ix} = \lim_{h \to 0} \frac{I($$

$$= \lim_{h\to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{3\sqrt{x}}$$