Fundamentos de dispositivos electrónicos

E.T.S.I.T. Universidad de Las Palmas de Gran Canaria

Antonio Hernández Ballester Benito González Pérez Javier García García

1	INTRODUCCIÓN	1
	1.1. Conceptos de dispositivo electrónico y modelo	2
	1.2. Modelos en pequeña y gran señal	3
	1.3. El electrón libre	4
	1.4. La ecuación de De Broglie	6
2	LOS MATERIALES SEMICONDUCTORES	7
	2.1. Estructura cristalina	7
	2.2. Estructura y propiedades de los semiconductores	13
	3.1. Estructura energética de un átomo aislado. Niveles de energía	15
	3.2. Estructura energética de los sólidos cristalinos. Bandas de energía	17
	3.3. Influencia de los campos eléctricos sobre las bandas de energía	21
	3.4. Conductores, semiconductores y aislantes según el modelo de bandas	22
	3.5. Dependencia de la anchura de la banda prohibida con la temperatura	23
	3.6. Masa efectiva	26
	3.7. El hueco como portador de carga	27
4	SEMICONDUCTORES EN EQUILIBRIO	31
	4.1. Estadística de partículas en los semiconductores	31
	4.2. Expresiones generales para la concentración de portadores	34
	4.3. Concentración intrínseca en semiconductores no degenerados	35
	4.4. Impurezas	38
	4.5. Algunas dependencias con la temperatura	42
5	SEMICONDUCTORES EN DESEQUILIBRIO	45
	5.1. Inyección de portadores	45
	5.2. Procesos de generación y recombinación	47
6	LA ECUACIÓN DE CONTINUIDAD	55
	6.1. Arrastre de portadores	55
	6.2. Difusión de portadores	59
	6.3.Efectos de los campos elevados	62
	6.4. La ecuación de continuidad	63
	6.5Inyección lateral en estado estacionario	65
	6.6Portadores minoritarios en la superficie	67
	6.7El experimento de Haynes-Schokley	68

1 INTRODUCCIÓN

Desde la invención del transistor bipolar en los años cuarenta la industria electrónica ha venido exigiendo dispositivos semiconductores cada vez más pequeños, más rápidos y con niveles de consumo menores.

Esta exigencia ha favorecido el desarrollo de tecnologías de fabricación y modelos cada vez más sofisticados. De hecho, si en los años sesenta las dimensiones mínimas de los dispositivos eran de decenas de micras, a finales del siglo éstas se han reducido hasta las centésimas de micra, llegando incluso a la fabricación de nanoestructuras en los albores del siglo XXI. Tal es así que fenómenos cuánticos que, al principio, resultaban despreciables no lo son ya y los modelos deben incorporarlos.

En este texto no se tratará con detalle los fenómenos cuánticos. Los modelos de los dispositivos que se desarrollarán son modelos "clásicos" que no han perdido validez por cuanto describen con suficiente aproximación su funcionamiento. Es más, es frecuente incorporar los fenómenos cuánticos a estos modelos mediante correcciones de segundo orden.

La presentación de los conceptos fundamentales de la teoría de los dispositivos electrónicos se realizará en varios capítulos. En primer lugar se definen los sólidos cristalinos indicando algunas de sus características. Hecho esto, se expondrá la manera en que se distribuye la energía en los materiales semiconductores para, posteriormente, iniciar la exposición de resultados cuantitativos en situaciones de equilibrio, mediante conceptos y resultados derivados de la mecánica estadística. Después se analizarán las situaciones de no equilibrio y finalmente, tras indicar cuáles son los mecanismos por los que las partículas cargadas en los semiconductores se ponen en movimiento, se deduce una ecuación clásica fundamental en la física de semiconductores: la ecuación de continuidad, que sintetiza los resultados obtenidos en los temas anteriores.

Este primer capítulo, sin embargo, se dedica a definir o recordar algunos conceptos básicos para el estudio de las propiedades de los dispositivos electrónicos basados en semiconductores.

1.1. Conceptos de dispositivo electrónico y modelo.

Si bien los conceptos de dispositivo electrónico y modelo de funcionamiento son conocidos, resulta conveniente dedicar unas líneas a precisar el significado de los mismos.

Así, un dispositivo electrónico es una entidad física que soporta campos eléctricos y magnéticos en la que tiene lugar la conducción por partículas cargadas.

Por su parte, un dispositivo semiconductor es aquel dispositivo electrónico en el que la conducción se realiza a través de un medio semiconductor, en las entrefases de medios semiconductores, o en las entrefases de medios semiconductores y otros medios.

Modelo es la descripción eléctrica de una entidad física mediante un elemento idealizado o mediante la interconexión de elementos idealizados. Es decir los modelos son circuitos electrónicos que reproducen el funcionamiento de un dispositivo.

Estas definiciones se aclaran con ayuda de las figuras 1.1 y 1.2. La primera muestra la estructura de capas de un dispositivo electrónico, un transistor MOS. La segunda muestra el símbolo de circuito correspondiente así como la curva característica del dispositivo $I_D=F(V_I,V_2)$. Claramente el nivel conceptual asociado al modelo es más abstracto que el corriente al dispositivo electrónico que se halla más próximo a la estructura física que lo sustenta.

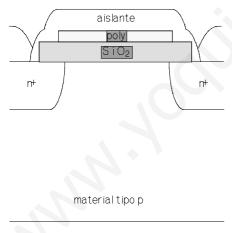


Fig. 1.1. Entidad física.

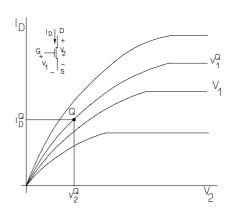


Fig. 1.2. Modelo en gran señal.

1.2. Modelos en pequeña y gran señal.

El modelo anterior es un modelo en gran señal, esto quiere decir que representa el funcionamiento del dispositivo en un amplio margen de variación de las señales presentes en sus terminales (corrientes y tensiones). Si es suficiente describir el dispositivo para pequeñas variaciones de estas magnitudes se recurre a los modelos lineales en pequeña señal.

Los modelos en pequeña señal no son más que modelos locales del funcionamiento de los dispositivos electrónicos. Por locales se debe entender que sólo son válidos si operan en torno a un punto llamado punto de operación o de reposo. Se obtienen a partir del modelo en gran señal mediante el desarrollo en serie de Taylor de la función que expresa el modelo en gran señal, despreciando los términos de orden superior al primero. Así, por ejemplo, en la figura 1.2 se indica un punto Q de la función $I_D = F(V_p, V_2)$. En ella, las variables independientes toman los valores V_I^Q y V_2^Q y la variable dependiente es I_D^Q .

La expresión del desarrollo en serie de Taylor la función $F(V_1, V_2)$ en un entorno del punto de operación $Q(V_1^Q, V_2^Q)$, es

$$F(V_1, V_2) = F(V_1^Q, V_2^Q) + \left[\frac{\partial F}{\partial V_1}\right]_Q \Delta V_1 + \left[\frac{\partial F}{\partial V_2}\right]_Q \Delta V_2 + \dots$$

donde $F(V_1^Q, V_2^Q) = I_D^Q$. Se suele introducir los siguientes cambios de notación

$$i_{d} = F(V_{1}, V_{2}) - F(V_{1}^{Q}, V_{2}^{Q}); g_{1} = \left[\frac{\partial F}{\partial V_{1}}\right]_{Q};$$

$$g_{2} = \left[\frac{\partial F}{\partial V_{2}}\right]_{Q}; v_{1} = \Delta V_{1}; v_{2} = \Delta V_{2}$$

donde g_1 y g_2 dependen del punto de operación Q pues es en este punto en el evalúan las derivadas. Por otro lado, si I_D representa una corriente y las V_1 y V_2 son tensiones g_1 y g_2 se miden en Ω^{-1} . Si en la ecuación $\{1.1\}$ se desprecian todos los términos de orden superior al primero y se incorporan los cambios indicados en $\{1.2\}$ su expresión queda de la forma

$$i_d = g_1 v_1 + g_2 v_2$$

que representa un modelo lineal llamado modelo en pequeña señal porque su validez no es universal como en los modelos en gran señal, es sólo válido en un entorno del punto de operación. Este modelo en pequeña señal se asocia al esquemático de la figura 1.3.

Concluimos que a partir de un modelo en gran señal es posible obtener el correspondiente en pequeña señal si se fija el punto de operación.

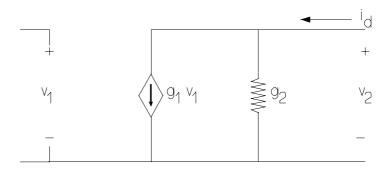


Fig. 1.3 Modelo simplificado en pequeña señal del MOSFET

1.3. El electrón libre.

Un electrón es una partícula elemental cargada. Su carga es por definición negativa y de valor $q=1,6\cdot 10^{-19}$ C, y su masa $m_n=9,11\cdot 10^{-31}$ Kg.

Un electrón libre es aquel sobre el que no actúa resultante alguna de fuerzas, por lo tanto se puede escribir,

$$F = 0 \implies F = \frac{dp}{dt} \implies p = cte$$
.

En estas condiciones la energía total de la partícula es,

$$E_T = K = \frac{1}{2}m_n v^2 = \frac{p^2}{2m_n} = \frac{p_x^2 + p_y^2 + p_z^2}{2m_n}$$
 {1.1}

esta ecuación es la relación que liga a las componentes del momento con la energía del electrón que, alternativamente, puede expresarse mediante la siguiente

$$p_x^2 + p_y^2 + p_z^2 = \sqrt{2m_n E_T}$$

siendo ésta la ecuación de una esfera de radio $\sqrt{2m_e E_T}$ centrada en el origen en un sistema de referencia de un espacio descrito por los ejes (p_x, p_y, p_z) , este espacio se denomina espacio de momentos. En este espacio se define el operador diferencial "gradiente" de una manera completamente equivalente al caso del espacio directo,

$$\nabla_{p} = \frac{\partial}{\partial p_{x}} u_{1} + \frac{\partial}{\partial p_{y}} u_{2} + \frac{\partial}{\partial p_{z}} u_{3}$$

donde los vectores u_1 , u_2 , u_3 son los unitarios en las direcciones y sentidos positivos de los ejes Op_x , Op_y , Op_z , respectivamente.

Volviendo a la ecuación {1.1} y aplicando el operador definido a la energía total, es decir, a partir de la expresión de la energía en términos del momento lineal es posible

$$\nabla_{p} E_{T} = \frac{1}{m_{n}} (p_{x} u_{1} + p_{y} u_{2} + p_{z} u_{3}) = (v_{x} u_{1} + v_{y} u_{2} + v_{z} u_{3}) = v$$

calcular la velocidad del electrón sin más que calcular el gradiente de dicha energía en el espacio de momentos.

Para analizar los efectos de la aplicación del gradiente dos veces se simplifica el estudio al caso unidimensional,

$$E_T = \frac{p^2}{2m_n} \Rightarrow \frac{d^2E_T}{dp^2} = \frac{1}{m_n} \Rightarrow m_n = \left(\frac{d^2E_T}{dp^2}\right)^{-1}$$

esto es, la masa del electrón se obtiene como la inversa de la segunda derivada de su energía total. En tres dimensiones aplicar del gradiente dos veces conduce a

$$\nabla_{p}(\nabla_{p}E_{T}) = \begin{pmatrix} \frac{\partial^{2}E_{T}}{\partial p_{x}^{2}} & \frac{\partial^{2}E_{T}}{\partial p_{x}\partial p_{y}} & \frac{\partial^{2}E_{T}}{\partial p_{x}\partial p_{z}} \\ \frac{\partial^{2}E_{T}}{\partial p_{y}\partial p_{x}} & \frac{\partial^{2}E_{T}}{\partial p_{y}^{2}} & \frac{\partial^{2}E_{T}}{\partial p_{y}\partial p_{z}} \\ \frac{\partial^{2}E_{T}}{\partial p_{z}\partial p_{x}} & \frac{\partial^{2}E_{T}}{\partial p_{z}\partial p_{y}} & \frac{\partial^{2}E_{T}}{\partial p_{z}^{2}} \end{pmatrix} = \begin{pmatrix} m_{n}^{-1} & 0 & 0 \\ 0 & m_{n}^{-1} & 0 \\ 0 & 0 & m_{n}^{-1} \end{pmatrix}$$

que podemos escribir en notación más compacta como

$$m_{ij} = (\frac{\partial^2 E_T}{\partial p_i \partial p_i})^{-1}$$

y que se puede denominar tensor de masas. Para interpretar el significado de una masa inerte expresada como una magnitud tensorial se partirá del concepto de masa derivado de la segunda ley de Newton. La masa es un invariante (si las velocidades son moderadas) que aparece como la resistencia que oponen los cuerpos a cambiar su estado de movimiento cuando sobre ellos actúa una fuerza. Siendo una magnitud escalar se concluye que el cuerpo sufre aceleración en la misma dirección y sentido en que se aplica la fuerza causante. Esto es así si existe isotropía. Puede ocurrir, sin embargo, que un objeto material responda de distinta manera al actuar sobre él fuerzas de distinta dirección, acelerándose mas en unas direcciones que en otras para fuerzas aplicadas de igual módulo. En esas situaciones no es suficiente un escalar para representar la inercia del cuerpo, se necesita una magnitud capaz de dar cuenta de las distintas direcciones del espacio y sus combinaciones. Es en estos casos de anisotropía del material cuando se recurre a magnitudes tensoriales. La situación se puede asemejar al siguiente ejemplo, se desea lijar un trozo de madera veteada, es claro que si la lija se pasa según la dirección de las vetas será más fácil el lijado que si se desplaza perpendicularmente. Este caso es fácilmente explicable sabiendo que las fuerzas de rozamiento son menores en la dirección longitudinal a las vetas que en la transversal. Pero si no se pudiesen percibir las vetas de la madera (se lija en un cuarto oscuro y se utiliza unos guantes de modo que con el tacto tampoco es posible notarlas) se experimenta que en unas direcciones la inercia del papel de lija es menor que en otras. La conclusión que obtiene el observador (la persona que lija) es que la masa del papel de lija depende de la dirección en que se aplique la fuerza. Esto es, se precisaría una magnitud tensorial para describir el fenómeno.

En el caso del electrón libre, dado que el espacio es isótropo resultará que el tensor de masas se reduce a un escalar de valor m_n .

Por lo tanto el conocimiento de la energía de un electrón libre en términos del momento permite especificar el problema dinámico del mismo: se conocen la velocidad y la masa de la partícula. Estos resultados, que en este ejemplo parecen complicar el problema, mostrarán su potencia cuando se analicen electrones sometidos a la perturbación de otras muchas partículas situadas en su entorno.

1.4. La ecuación de De Broglie.

Esta ecuación, fundamental en la física moderna, relaciona el carácter ondulatorio y el corpuscular de una partícula. Su expresión es

$$p = \hbar k \tag{1.9}$$

donde p representa el momento lineal de la partícula, \hbar es la constante de Planck reducida $\hbar = h/2\pi = 1,055 \cdot 10^{-34}$ Js y k es el número de ondas asociado a la partícula en consideración. Con $\{1.9\}$ podemos expresar los resultados del apartado anterior de la siguiente manera

$$E_{T} = \frac{\hbar^{2}}{2m_{n}} (k_{x}^{2} + k_{y}^{2} + k_{z}^{2}) ; \quad \mathbf{v} = \frac{1}{\hbar} \nabla_{k} E_{T} ; \quad m_{ij} = \frac{\hbar^{2}}{\partial^{2} E_{T}} \frac{\partial^{2} E_{T}}{\partial k_{i} \partial k_{j}}$$

2 LOS MATERIALES SEMICONDUCTORES

Los materiales semiconductores son sólidos cristalinos, hecho que es analizado en el presente tema por presentar interesantes implicaciones en el tratamiento físico ulterior del mismo.

En particular los cristales son sustancias que poseen una estructura microscópica periódica, por ello sus propiedades microscópicas también son periódicas. Tras la exposición de los conceptos básicos de la física de sólidos cristalinos, describiendo especialmente la estructura atómica del diamante, que es la estructura básica de los cristales de materiales semiconductores, el tema finaliza con la enumeración de algunas propiedades que exhiben los materiales semiconductores. Estas propiedades caracterizan estos sólidos pues son rasgos que nos permiten clasificar un material, desconocido a priori, como un semiconductor.

2.1. Estructura cristalina.

Los átomos de un sólido no ocupan posiciones fijas. Cada átomo vibra con una pequeña amplitud en torno a una posición de equilibrio que sí es estacionaria. El que las posiciones de equilibrio permanezcan inmóviles da al sólido una estructura rígida y lo distingue de un líquido o un gas, pues aunque en los fluidos los átomos también se muevan, la diferencia con los sólidos es que recorren grandes distancias, y por esto su estructura no es permanente.

La distribución de las posiciones de equilibrio de los átomos define la estructura de un sólido. Los sólidos se pueden agrupar en tres categorías: cristalinos, amorfos y policristalinos. En los cristalinos, la posiciones de equilibrio de los átomos presentan un patrón geométrico que se repite sin que varíe la composición, dimensión u orientación. En los sólidos amorfos, las posiciones de equilibrio no forman un patrón que se repita. Por su parte, un sólido policristalino está formado por un gran número de pequeños cristales, denominados monocristales, que no están ordenados entre sí.

Los materiales semiconductores son sólidos cristalinos. Éstos pueden definirse mediante la asociación de una base de átomos y una red cristalina. La red que es una idealización geométrica y como tal, no tiene entidad física. Una red cristalina es un conjunto de lugares geométricos (denominados puntos de red) dados por el vector,

$$\rho_{mnp} = m\mathbf{a} + n\mathbf{b} + p\mathbf{c}; \qquad m, n, p \in \mathbb{Z}$$
 {2.1}

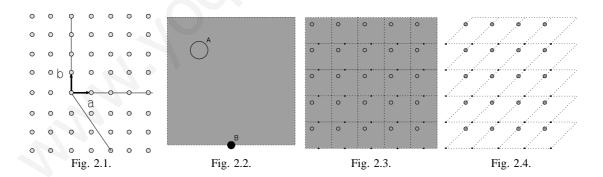
como se especifica, m, n, p son números enteros arbitrarios y **a**, **b**, **c** son los llamados vectores fundamentales de traslación. Las longitudes de **a**, **b**, **c** se denominan constantes de red.

La palabra "arbitrarios", utilizada en la definición, implica que la red cristalina posee una extensión infinita pues infinitos son el número de enteros que pueden elegirse. Por lo tanto no contiene superficies que la limiten. Obviamente esto es una aproximación al mundo real.

La base de átomos es un grupo de átomos o de especies químicas ligados a cada punto de la red o situados en cada paralelepípedo elemental que, al repetirse en el espacio, forma el cristal.

Por ejemplo, considérese el caso en dos dimensiones mostrado en la figura 2.1. En ella los vectores fundamentales de traslación de la red son $\mathbf{a} = \mathbf{a}_x$, $\mathbf{b} = \mathbf{a}_y$, $\mathbf{c} = \mathbf{0}$; siendo \mathbf{a}_x y \mathbf{a}_y los vectores unitarios en las direcciones OX y OY, respectivamente. Haciendo variar los valores de los enteros m y n en la ecuación $\{2.1\}$ se rellena el plano con puntos de red. En particular se destaca el punto de red para los valores m=2 y m=3. Con todos los posibles valores de m y n se rellena el espacio de puntos de red.

Si a esta red cristalina se asocia una base de átomos se habrá definido un cristal. Así si A y B son dos átomos y se decide que en cada cuadrícula (celda) de la figura 2.1 se sitúa A en la posición (a/4, 3b/4) y B en la (a/2,0) se tiene que, en cada celda,la distribución de átomos es como la mostrada en la figura 2.2 y el cristal entero, obtenido por repetición de la anterior, será como el representado en la figura 2.3.



Nótese como los puntos de red no necesariamente coinciden con la posición de los átomos A y B. La definición del cristal que se ha realizado no es única: se puede elegir otro par de vectores fundamentales de traslación y disposición de la base de átomos que represente al

mismo cristal. Si se redefinen los vectores fundamentales de traslación de la red haciendo $\mathbf{a} = \mathbf{a_x}$, y $\mathbf{b} = (\mathbf{a_x} + \mathbf{a_y})/\sqrt{2}$, y la nueva posición de los átomos es A:(0,3b/4), B:(0,0) se puede comprobar en la figura 2.4 que el cristal es el mismo que el definido antes.

En la figura 2.5 se muestran algunas celdas importantes. La mayor parte de los semiconductores cristalizan según la red del diamante o de la blenda (sulfuro de zinc). Ambos cristales pertenecen a la llamada fase tetraédrica que es aquella en la que cristalizan los materiales en los que cada átomo está rodeado por cuatro vecinos más próximos equidistantes situados en las esquinas de un tetraedro (figura 2.7). El enlace entre dos vecinos próximos se realiza mediante dos electrones de espines opuestos.

Se llama ejes de un cristal a los ejes definidos por los vectores fundamentales de traslación ${\bf a},\,{\bf b}\,\,{\bf y}\,\,{\bf c}.$

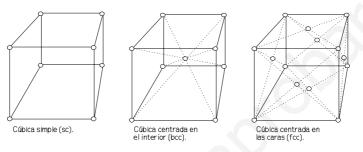


Fig. 2.5. Celdas del sistema cúbico.

Se llama celda primitiva (o celda unidad) a aquella celda en cuyo interior sólo se halla un átomo. Lo son, por ejemplo, aquellas celdas que sólo tengan átomos en sus vértices (en la red cúbica simple cada vértice aporta la octava parte de un átomo a la celda, con lo que las fracciones correspondientes a los ocho vértices del cubo corresponden a un átomo en el interior), en sus caras (la mitad del átomo por cara) o en su interior. Con esta definición se garantiza la no existencia de una celda de menor volumen que sirva como bloque para construir la estructura.

Un procedimiento general para obtener celdas primitivas lo constituye la llamada construcción de Wigner-Seitz. Ésta permite construir la llamada celda primitiva de Wigner-Seitz, que se define como aquella obtenida al aplicar la siguiente secuencia (figura 2.6),

- 1.- unir un punto de la red con todos los que lo rodean,
- 2.- dibujar las líneas o planos perpendiculares a aquellas uniones y que pasan por su punto medio,
- el volumen mínimo que queda encerrado en esta figura es la celda primitiva de Wigner-Seitz.

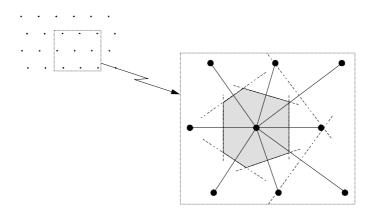


Fig. 2.6. Construcción de la celda de Wigner-Seitz.

2.1.2. Red del diamante.

Las redes del diamante y la blenda (sulfuro de zinc), cuya estructura se muestra en la figura 2.7, se pueden considerar como dos redes fcc interpenetradas según la diagonal del cubo en la tercera parte de su longitud.

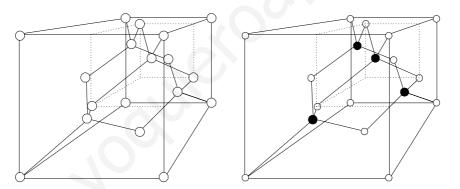


Fig. 2.7. Redes del diamante y la blenda.

El silicio y el germanio cristalizan según la red del diamante pues como en ella todos sus átomos son iguales (en el diamante todos los átomos son de carbono). El arseniuro de galio (GaAs) cristaliza según la red de la blenda, una de las subredes fcc está constituida por átomos de arsénico y la otra por átomos de galio. El parámetro de red del diamante es 3.56 Å, el del silicio 5.43 Å, el del germanio 5.66 Å, y el del arseniuro de galio 5.65 Å.

2.1.3. Índices de Miller.

Los planos de un cristal se determinan por un conjunto de tres números enteros denominados índices de Miller. Éstos números se obtienen según el siguiente procedimiento:

- encontrar los puntos de intersección del plano con los ejes definidos por los vectores fundamentales de traslación. Por ejemplo el plano indicado en la figura 2.8.b corta a los ejes en el punto (-1/2,∞,∞).
- 2.- hallar los valores recíprocos a los anteriormente obtenidos y reducirlos a los tres enteros menores en la misma relación. Se forma así la terna (hkl) que constituye los índices de Miller. Los cortes con la parte negativa del eje se notan con un guión sobre el entero resultante. Siguiendo con la figura 2.8.b, el punto $(-1/2,\infty,\infty)$ pasa a (-2,0,0) y después a $(\overline{2},0,0)$.

En la figura 2.8 se muestran algunos planos relevantes de la red cúbica. Los índices indicados están referidos a los sistemas de referencia de cada uno de los cristales cúbicos mostrados.

Dadas las propiedades de simetría del cristal algunos planos son equivalentes. Así por ejemplo, las caras del cristal cúbico: (100), (010), (001), (100), (010), (001), son planos equivalentes. Un conjunto de planos equivalentes se denota utilizando llaves en lugar de paréntesis, {100}.

Los índices de una dirección en un cristal se expresan, igualmente utilizando los índices de Miller, por la serie de los enteros más pequeños que dan la relación de los componentes de un vector en la dirección deseada referidas a los ejes.

Los enteros se escriben dentro de un corchete [hkl]. En un cristal el eje x es la dirección [100]; el eje y es la dirección [010]; etc.. En los cristales cúbicos la dirección [hkl] es siempre perpendicular al plano (hkl) que tiene los mismos índices. Esto no es cierto para otros sistemas.

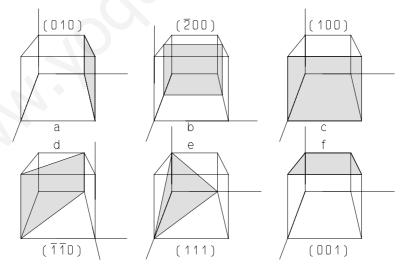


Fig. 2.8. Índices de Miller de algunos planos de un cristal cúbico

2.1.4. Red recíproca.

Todos los puntos de red de una red cristalina se pueden generar a partir de uno de ellos (tomado como origen) sin más que seleccionar distintas ternas (m,n,p) del vector de traslación que define la llamada red directa {2.1}. Existe además una red equivalente a la red directa que se denomina red recíproca. Los vectores fundamentales que definen la red recíproca están dados por las ecuaciones,

$$A = 2\pi \frac{b \times c}{v_c}$$
; $B = 2\pi \frac{c \times a}{v_c}$; $C = 2\pi \frac{a \times b}{v_c}$

siendo v_c el volumen de una celda unidad de la red directa de valor,

$$v_{a} = \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})$$

tal y como han sido definidos, los vectores fundamentales de la red recíproca son perpendiculares a algún par de vectores fundamentales de la red directa y verificándose,

$$a \cdot A = 2\pi, \quad a \cdot B = 0, \quad a \cdot C = 0,$$

 $b \cdot A = 0, \quad b \cdot B = 2\pi, \quad b \cdot C = 0,$
 $c \cdot A = 0, \quad c \cdot B = 0, \quad c \cdot C = 2\pi.$ (2.2)

La dimensión de los vectores de la red recíproca es (longitud)⁻¹ (de ahí su nombre), y los vectores de traslación de esta nueva red están dados por,

$$G_{hkl} = hA + kB + lC; \qquad h, k, l \in \mathbb{Z}$$
 {2.3}

El volumen de la celda unidad en la red recíproca es,

$$V_C = A \cdot (B \times C) = \frac{(2\pi)^3}{a \cdot (b \times c)} = \frac{(2\pi)^3}{v_c}$$

Nótese cómo de las ecuaciones {2.2} se obtiene,

$$G_{hkl} \rho_{mnp} = 2\pi z; z \in \mathbf{Z}$$

es decir, cada vector de la red recíproca es normal a un conjunto de planos en la red directa.

2.2. Estructura y propiedades de los semiconductores.

Algunos parámetros que permiten "detectar" si un material es o no un semiconductor son, entre otros, el valor de la resistividad del material, su composición y la variación de la conductividad con la temperatura.

En relación con el valor de la resistividad del material medida a la temperatura ambiente, puede establecerse aproximadamente que el material es un metal si su resistividad a temperatura ambiente $\rho(T_a)$ se encuentra en el inetervalo $[10^{\text{-6}},10^{\text{-4}}]~\Omega$ ·cm, el material es un semiconductor si $10^{\text{-4}} < \rho(T_a) \le 10^{10}~\Omega$ ·cm y es un aislante si $\rho(T_a) > 10^{10}~\Omega$ ·cm.

Atendiendo a su composición, los materiales semiconductores pueden ser simples o compuestos. Son semiconductores simples los formados por un solo tipo de elemento químico perteneciente al grupo IV_A de la tabla periódica, entre ellos destaca el silicio (Si). Los

semiconductores compuestos están formados por más de un elemento. Suelen ser combinaciones de elementos de los grupos III_A - V_A , como el arseniuro de galio (GaAs) o combinaciones de elementos de los grupos II_A - VI_A , como el sulfuro de cadmio (CdS). El más utilizado en las aplicaciones electrónicas de entre los semiconductores compuestos es el GaAs. También son semiconductores compuestos algunas soluciones sólidas de elementos de los grupos III_A - V_A , por ejemplo la solución ternaria $Al_xGa_{1-x}As$ o la cuaternaria $In_xGa_{1-x}As_yP_{1-y}$, en ambos casos x e y son números con valores en el intervalo [0,1] llamados fracciones molares de los elementos. Indican el número relativo de átomos de cada elemento en la solución sólida.

Es posible una gran variedad de selección de materiales semiconductores cuyas propiedades pueden seleccionarse para satisfacer determinadas especificaciones. Esto ha dado lugar a una nueva rama de esta ciencia: la Ingeniería de bandas.

Finalmente, existe una evidente diferencia entre un metal y un semiconductor al observar la variación de la conductividad con la temperatura (figuras 2.9). En los semiconductores la variación relativa es de varios órdenes de magnitud cosa que no ocurre en los metales. Además, el coeficiente de temperatura es negativo en los metales para todo valor de la temperatura en el intervalo de medida mientras que en los semiconductores se producen cambios de signo.

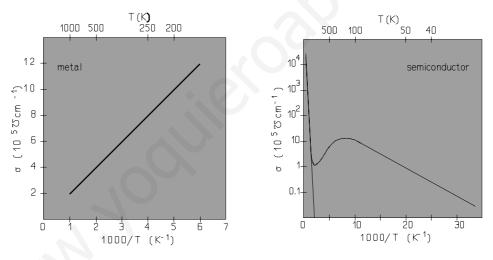


Fig. 2.9. Variación de la conductividad con la temperatura

MMN. HODILLEROSTRICKOST

3 BANDAS DE ENERGÍA

El análisis de los materiales semiconductores se basa en la distribución de la energía de las partículas en su seno. Por ello dedicamos este tema a su presentación. Partiendo de la distribución en niveles discretos de las energías de los electrones en los átomos aislados, justificaremos que dichas capas se transformen en bandas si los átomos están sometidos a fuertes interacciónes como en un sólido cristalino. Estas bandas se representan en un espacio "recíproco", donde los ejes son los momentos cristalinos en tres dimensiones. La representación de este diagrama de bandas de energía en el espacio real será el fundamento del cálculo de la concentración de portadores en los semiconductores.

El modelo de bandas permite la clasificación de los materiales en función de la conductividad que presentan, explicando así la respuesta "peculiar" del semiconductor al variar la tempertura.

Se discutirá también, en este tema, la manera en que un campo electrostático altera la forma de las bandas de energía. Para finalizar definiendo dos conceptos esenciales: la masa efectiva y el hueco como portador de carga.

3.1. Estructura energética de un átomo aislado. Niveles de energía.

Un átomo aislado tiene distribuidas su carga y su masa en dos regiones llamadas núcleo y corteza. El núcleo atómico es la región más masiva y ocupa la parte central del átomo; contiene, entre otras partículas, a los protones y a los neutrones. La corteza rodea al núcleo atómico y en ella orbitan los electrones en varias capas llamadas orbitales.

La energía de los electrones en las distintas capas se calcula resolviendo la ecuación de Schrödinger independiente del tiempo

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + U(\mathbf{r})\right]\psi_n(\mathbf{r}) = E_n\psi_n(\mathbf{r})$$
 {3.1}

en esta ecuación los electrones se describen mediante su "función de onda" $\Psi_n(\mathbf{r})$, en esta notación el subíndice indica el nivel energético en el átomo aislado, $U(\mathbf{r})$ representa a la energía potencial del electrón y E_n su energía total. Para el átomo de hidrógeno la energía potencial es de tipo coulombiano

$$U(\mathbf{r}) = -\frac{q^2}{4\pi\varepsilon_0|\mathbf{r}|}$$
 (3.2)

Las soluciones de la ecuación {3.1} con la energía potencial {3.2} existen si la energía es de la forma

$$E_n = -\frac{E_B}{n^2}$$
; $n=1, 2, 3, ...$ {3.3}

siendo E_B la llamada energía de Bohr cuyo valor es

$$E_B = -\frac{q^2}{8\pi\varepsilon_0 a_B} \tag{3.4}$$

donde a_B es el radio de Bohr

$$a_B = \frac{4\pi\epsilon_0^2\hbar^2}{m \ q^2} = 0.529 \ \text{\AA}$$

con este valor la energía de Bohr es -13.6 eV.

El símbolo n en la ecuación $\{3.4\}$ es el llamado número cuántico principal.

Es decir, la energía se distribuye en niveles discretos y depende del número cuántico n. Los primeros valores permitidos son -13.6 eV, -3.4 eV, -1.51 eV y -0.85 eV, siendo el número cuántico n=1, 2, 3 y 4, respectivamente. Nótese que según la ecuación {3.3} el valor de la energía del electrón se anula para n tendiendo a infinito, lo que se corresponde con un electrón que no pertenece al átomo de hidrógeno. Evidentemente los electrones tenderán a ocupar los niveles más bajos pues son los de menor energía.

Si bien la energía depende sólo del número n, las funciones de onda del electrón dependen de otros tres números cuánticos: el orbital, l, el magnético, m y el espín, s. Cada uno de ellos puede tomar sólo ciertos valores:

$$l = 0, 1, 2,..., n-1$$

$$m = -l, -l+1,...,0,...,l-1, l$$

$$s = -\frac{1}{2}, +\frac{1}{2}$$

Un estado de electrón se define por un conjunto permitido de números cuánticos (n,l,m,s); por ejemplo, el nivel fundamental (n=1) tiene asociados dos estados correspondientes a los valores de los cuatro números cuánticos (1,0,0,1/2) y (1,0,0,-1/2); y el segundo nivel tiene los ocho estados siguientes: (2,0,0,1/2), (2,0,0,-1/2), (2,1,-1,1/2),

(2,1,-1,-1/2),(2,1,0,1/2),(2,1,0,-1/2),(2,1,1,1/2) y (2,1,1,-1/2). Una notación alternativa para indicar el número cuántico orbital es la utilizada en espectroscopía, consiste en llamar los orbitales mediante las letras s, p, d, f,... en correspondencia con los valores 0, 1, 2, 3,... De modo que es común hablar de orbitales s, p o d en lugar de indicar los valores de l.

Al analizar la ocupación de estos estados se ha de considerar el llamado principio de exclusión de Pauli por el que no es posible que dos o más electrones ocupen un estado con exactamente los mismos números cuánticos. Además es preciso considerar que en ausencia de una perturbación externa que pueda forzar a los electrones a aumentar su energía, éstos ocuparán las posiciones de menor energía; los orbitales se "llenarán" desde el nivel fundamental hasta que se alojen todos los electrones del átomo, cuyo número debe coincidir con el de protones en el núcleo pues los átomos son eléctricamente neutros. De acuerdo con esto, los materiales semiconductores simples poseen cuatro electrones en su última capa. Por ello los cristales semiconductores pertenecen a la fase tetraédrica.

3.2. Estructura energética de los sólidos cristalinos. Bandas de energía.

La estructura de bandas de un sólido cristalino es la relación que liga la energía y el número de ondas o momento¹ en su seno. Esto es, la estructura de bandas es la función

$$E = E(\mathbf{k})$$

Puede obtenerse aproximadamente a partir de la ecuación de Schrödinger independiente del tiempo aplicada a un problema monoelectrónico adecuado,

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + U(\mathbf{r})\right]\psi_k(\mathbf{r}) = E_k\psi_k(\mathbf{r})$$
 (3.4)

Las soluciones de esta ecuación, como en el caso anterior del átomo de hidrógeno, permiten no sólo conocer la distribución de la energía de los electrones, también la forma de las funciones de onda de éstas partículas en el seno del sólido cristalino. Las funciones de onda, en todo caso, satisfarán el teorema de Bloch que es uno de los teoremas básicos de la teoría de bandas y que da la solución de la ecuación $\{3.4\}$ para un sólido cristalino. Establece que si la energía potencial U(r) es periódica con la periodicidad de la red, las soluciones de la ecuación de Schrödinger son de la forma,

$$\psi_{k}(\mathbf{r}) = e^{j\mathbf{k}\mathbf{r}}u_{n}(\mathbf{k},\mathbf{r})$$

donde la solución $\Psi_k(\mathbf{r})$ se denomina función de Bloch, $u_n(\mathbf{k}, \mathbf{r})$ es una función periódica con la periodicidad de la red directa y n es el llamado índice de banda.

Por otro lado, a partir del teorema de Bloch puede demostrarse que la energía E_k es periódica en la red recíproca, esto es,

donde G_{hkl} es un vector de traslación de la red recíproca (ecuación $\{2.3\}$). Dada la

¹Aquí momento cristalino y número de ondas se manejan como sinónimos aunque estrictamente no lo sean. La razón es que son proporcionales por la relación de De Broglie.

$$E_k = E_{k+G_{hkl}}$$

periodicidad de la energía y dado un índice de banda, n, para especificar de manera unívoca la energía es suficiente utilizar los valores de k de una celda primitiva de la red recíproca que equivale a un período de la función de Bloch. Se suele usar la celda de Wigner-Seitz. Esta celda primitiva del espacio recíproco se denomina "primera zona de Brillouin". De modo que es posible reducir cualquier valor del momento (k) en el espacio recíproco a un punto en la primera zona de Brillouin.

La primera zona de Brillouin de las estructuras del diamante y la blenda es la correspondiente a la red cúbica centrada en las caras mostrada en la figura 3.1.

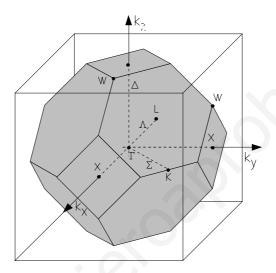


Fig. 3.1 Primera zona de Brillouin del diamante y la blenda

Los puntos y direcciones de simetría más importantes son:

- · centro de zona, punto $\Gamma = (0,0,0)$
- · diagonales, direcciones <111>, (se suele denominar dirección Λ)
- intersecciones de las diagonales con el límite de zona, puntos L= $(2\pi/a)(1/2,1/2,1/2)$
- aristas, ejes <100>, (Δ)
- intersecciones de las direcciones Δ con el límite de zona, puntos $X=(2\pi/a)(0,0,1)$
- ejes <110>, (Σ)
- intersecciones de las direcciones Σ con el límite de zona, puntos K= $(2\pi/a)(3/4,3/4,0)$

Los diagramas de bandas E=E(k) del silicio y arseniuro de galio se representan en las figuras 3.2. En ellas los ejes de abcisas son direcciones en el espacio recíproco. Las cuatro direcciones posibles del tipo [111] son equivalentes entre sí como lo son las tres direcciones del tipo [100]. Por eso, para representar la máxima información posible en el plano se toma el semieje positivo según la dirección [100] y el negativo según la [111].

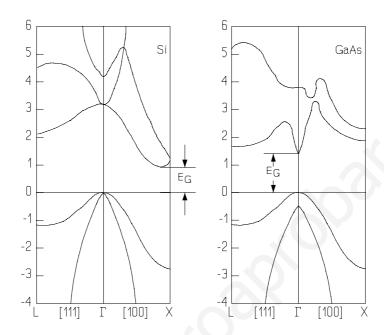


Fig. 3.2. Diagrama de bandas de energía del silicio y arseniuro de galio

La energía de los electrones se representa convencionalmente como positiva al recorrer el eje de ordenadas hacia arriba.

Es destacable que para cualquier semiconductor existe una región prohibida de energías en la que no pueden existir estados permitidos de electrones. Las bandas superiores $(E_G>0)$ se denominan bandas de conducción (BC) y las inferiores son las bandas de valencia (BV). La anchura de la banda prohibida (E_G) se define como la diferencia de energía entre el mínimo absoluto de las bandas de conducción y el máximo absoluto de las de valencia. El mínimo absoluto de las bandas de conducción se denomina nivel de conducción y se denota por E_C y análogamente, el máximo absoluto de las bandas de valencia se denomina nivel de valencia, E_V . La anchura de la banda prohibida (también llamado "gap" de energías), E_G , es el parámetro más importante de la física de semiconductores.

Los estados de energía no forman un continuo, están discretizados. Sin embargo, la separación entre estados es tan pequeña (del orden de 10⁻²³ eV) que las bandas se pueden considerar cuasi-continuas (esto equivale a que en el tratamiento matemático es posible

expresar relaciones diferenciales).

Cuando aparecen varias ramas en la banda de conducción, la más importante desde el punto de vista de la conducción eléctrica es la rama inferior que se denomina rama de conducción (esta rama es en primera instancia la receptora de los electrones que vayan a ocuparla parcialmente).

Análogamente las ramas de mayor interés en la BV son las que poseen un máximo más elevado, pues serán los niveles próximos a dicho máximo los primeros que podrán quedar vacantes.

Las dos subbandas de valencia que tienen el mismo máximo contienen los cuatro electrones de valencia aportados por cada átomo de la red.

El mínimo absoluto (E_C) de la banda de conducción se encuentra en un punto próximo al X para el Si y en el centro de la zona de Brillouin (punto Γ) para el GaAs. En todos los casos el máximo absoluto de las BV (E_V) se halla en el centro de zona. En el GaAs el máximo de las bandas de conducción y el mínimo de las de valencia coinciden en el punto Γ , por eso este material presenta una probabilidad apreciable de interacciones *electrón-fotón*. Se denomina material de banda directa.

Los materiales de banda indirecta (que se definen como los que no son de banda directa) presentan una mayor probabilidad de ocurrencia de interacciones *electrón-fonón*.

Una expresión aproximada de las bandas de energía de los electrones es,

$$E = E_0 + A_x \cos(k_x a) + A_y \cos(k_y b) + A_z \cos(k_z c)$$

que desarrollada en serie de Taylor para el caso de las bandas de valencia, en un entorno del centro de zona es aproximadamente,

$$E = E_{\min} + A_x (k_x a)^2 + A_y (k_y b)^2 + A_z (k_z c)^2$$

que depende del momento en forma parabólica.

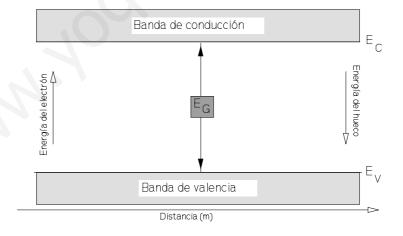


Fig. 3.3. Representación simplificada del diagrama de bandas de energía

La representación habitual de los diagramas de bandas de energía se llama representación simplificada y se muestra en la figura 3.3. En ella sólo se indica la posición de los distintos niveles energéticos.

Es importante destacar que en esta figura 3.3 el eje de abcisas es ahora la distancia medida en el espacio directo (en los anteriores el eje de abcisas representa al momento (k)).

3.3. Influencia de los campos eléctricos sobre las bandas de energía.

En el apartado 1.3 se ha mostrado cómo la relación E=E(p)=E(k) caracteriza la velocidad y la masa de los electrones libres, en los sólidos cristalinos la función E=E(k) (bandas de energía) también representa la dinámica de los electrones en el seno del cristal, en el que están sometidos a un potencial periódico. Esto es, E(k) incluye todos los efectos asociados al potencial periódico de la red cristalina.

Sea una muestra cristalina de material semiconductor en el seno de un campo eléctrico de magnitud lo suficientemente pequeña como para no modificar la estructura periódica del material. La energía total de un electrón en la red se puede expresar como,

$$E_T = E_0 + E_C(\mathbf{k}) + E_P(\mathbf{r})$$

el último sumando es la energía potencial asociada al campo, que se expresa,

$$E_{p}(\mathbf{r}) = q \int_{0}^{\mathbf{r}} \varepsilon(\mathbf{p}) d\mathbf{p}$$

luego la energía total será,

$$E_T = E_0 + E_C(\mathbf{k}) + q \int_0^r \epsilon(\mathbf{p}) d\mathbf{p}$$

esta relación admite la interpretación siguiente por analogía con la expresión correspondiente para los electrones libres: el primer sumando representa cierto valor de referencia, el segundo, por analogía al caso del electrón libre representa cierta energía cinética del electrón en la banda de energía correspondiente; nótese que este segundo término depende exclusivamente del vector de onda k, por último, el tercer sumando representa la influencia de la excitación exterior sobre la red, depende exclusivamente de la posición en el espacio directo. Por lo tanto, la excitación externa modifica sólo las bandas en el espacio directo. Es decir, las bandas se curvarán paralelamente.

Es posible formular un principio de conservación de la energía como sigue: "si E_T es constante, la variación en la energía cinética es compensada por una variación de signo opuesto de la energía potencial".

Las conclusiones que de este principio se derivan son distintas según se trate de bandas llenas o parcialmente llenas. En el caso de bandas llenas la variación de la energía cinética de un electrón ha de ser compensada con una variación, de signo opuesto, en la energía cinética de otro electrón de la banda. De esta forma, en una banda llena no puede producirse variación global de la energía cinética y por tanto no cabe variación alguna de la energía

potencial. En las bandas parcialmente llenas la situación es radicalmente distinta. Pueden producirse variaciones de la energía potencial de uno o varios electrones a costa de otra variación, de igual magnitud y signo opuesto, de la energía cinética ya que en este caso son posibles las transiciones de electrones a niveles que estuviesen vacantes.

3.4. Conductores, semiconductores y aislantes según el modelo de bandas.

En el apartado anterior se ha visto cómo puede obtenerse el diagrama de bandas de energía de los electrones en un sólido cristalino así como el aspecto que presentan los del silicio y el arseniuro de galio. Atendiendo a la posición relativa de los niveles de conducción y de valencia se pueden distinguir, en general, dos tipos de materiales distintos, aquellos en los que se solapen las bandas de valencia y conducción y aquellos cuyas bandas se encuentren separadas por la banda de energías prohibidas (figura 3.4). Ya se ha indicado que en el segundo caso se incluyen los materiales semiconductores.



Fig. 3.4. Diagramas de bandas de materiales distintos.

A la temperatura del cero absoluto, un material cuyo diagrama de bandas sea el de la figura 3.4.b presentará la banda de valencia totalmente llena y la de conducción podrá estar totalmente vacía o parcialmente llena. Estará totalmente vacía si todos los electrones de cada átomo "caben" en los estados permitidos en la banda de valencia, y estará parcialmente llena si no hay estados permitidos suficientes en la banda de valencia para alojar todos los electrones.

En el apartado anterior se ha indicado que los electrones experimentarán una aceleración por la acción de un campo eléctrico débil si tienen la posibilidad de transitar hacia nuevos estados energéticos. Por lo tanto para que se produzca movimiento de electrones por el campo es necesario que en la banda existan estados vacantes a los que puedan trasladarse.

De las consideraciones anteriores se deriva que un material cuyo diagrama de bandas en el cero absoluto sea como el de la figura 3.4.b con la banda de conducción totalmente vacía no puede conducir, mostrando carácter aislante. Así, estos materiales serán aislantes o semiconductores ya que mediante experimentación se sabe que son éstos los que no conducen para temperaturas muy bajas. La diferencia entre aislantes y semiconductores a temperaturas mayores (pues en el cero absoluto son idénticos desde el punto de vista de la conducción) reside en el valor de la anchura de la banda prohibida, E_G . Por ejemplo, el diamante presenta

una E_G =5,4 eV, y en el silicio E_G =1,12 eV. De modo que, al incrementar la temperatura, el silicio contiene muchos más electrones excitados térmicamente que el diamante ya que la energía que han de salvar en la excitación es casi cinco veces inferior en uno que en otro.

Los materiales cuya banda de energía es de la forma mostrada en la figura 3.4.a, o los que la tienen como en la 3.4.b con la banda de conducción parcialmente llena en el cero absoluto, pueden conducir al someterlos a un campo eléctrico. La razón es que ahora los electrones pueden transitar con facilidad a estados vacantes de energías superiores que pueden alojar los electrones que se encuentran bajo la influencia del campo eléctrico. Es más, a menores temperaturas la conducción es mayor porque, al disminuir las vibraciones térmicas, las colisiones con otras partículas de la red también disminuyen y los electrones se pueden mover más libremente.

En la línea de la discusión anterior y como resumen la figura 3.5 presenta esquemáticamente la manera en que se ocupan las bandas de energía a temperaturas superiores a 0 K en los distintos materiales atendiendo a su conductividad.

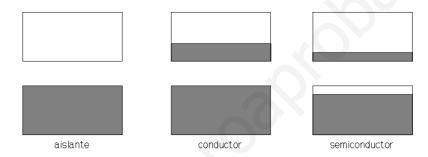


Fig. 3.5. Ocupación electrónica de las bandas de energía permitida en materiales aislantes, conductores y semiconductores a temperatura superior al cero absoluto.

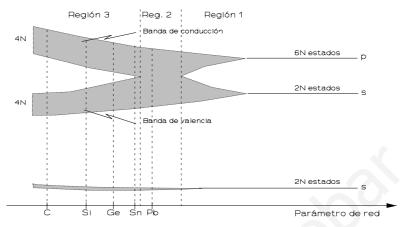
3.5. Dependencia de la anchura de la banda prohibida con la temperatura.

Cuando un átomo de los elementos del grupo IV_A está aislado, sus cuatro electrones de la última capa se distribuyen por pares en los orbitales s y p. Si varios átomos forman un sólido cristalino los niveles de energía permitidos se encuentran degenerados y se distribuyen, cualitativamente, según se indica en la figura 3.6.

En ella se representan los niveles de energía más externos en términos del parámetro de red, *a*, a la temperatura del cero absoluto.

Si el parámetro de red toma valores grandes (zona de la derecha de la región 1 en la figura) los niveles son análogos a los del átomo aislado, cada orbital puede alojar un par de electrones por cada átomo, si son N los átomos presentes, los estados permitidos son 2N en los orbitales s y 6N en los tres orbitales p. Cada uno de estos estados está asociado a un nivel de energía perfectamente definido. Al aproximar los átomos los niveles de energía se degeneran (zona de la izquierda en la región 1) debido a la influencia de cada átomo sobre

sus vecinos². La degeneración es la aparición de un cuasi continuo de niveles de energía permitidos en los orbitales s y p. Los orbitales s degenerados alojan dos electrones por átomo, es decir 2N electrones y los p pueden alojar hasta 6N electrones, por tanto se sitúan en ellos los dos electrones remanentes quedando 4N estados vacantes (los orbitales p no son



distinguibles).

Fig. 3.6. Niveles de energía de los electrones en función del parámetro de red a 0K

Si a disminuye aún más se alcanza cierto valor en el que se confunden todos los orbitales s y p; aparece una sola banda (región 2). En ella se encuentran los 8N estados permitidos que alojan a los 4N electrones de la última capa de estos elementos del grupo IV_A y quedan vacantes otros 4N estados. El cristal de plomo es estable para un parámetro de red correspondiente a esta región, por tanto este elemento es un metal.

Al seguir disminuyendo a se vuelven a separar las bandas (región 3) apareciendo una región intermedia en la que no puede existir ningún estado permitido, es la banda prohibida. La banda superior tendrá 4N estados permitidos y la inferior los restantes 4N estados. Dado que los electrones se sitúan con preferencia en los niveles energéticos inferiores, estarán ocupados todos los estados de la banda inferior (banda de valencia), es decir en la banda de valencia se alojan los 4N electrones del cristal, y en la banda de conducción no habrá ningún electrón, estando vacantes los 4N estados disponibles. Los valores del parámetro a en esta región son los de equilibrio en los cristales del estaño, germanio, silicio y carbono. Cuanto mayor es la anchura de la banda prohibida, E_G , mayor es también el carácter aislante del elemento cristalino considerado. Por ello se dice que el estaño es un semimetal, el germanio y silicio semiconductores (con E_G próxima a 1 eV), y el carbono (con E_G próxima a 5 eV) es un aislante.

² Principio de exclusión de Pauli.

Al aumentar la temperatura el radio medio de los átomos aumenta por efecto de las vibraciones térmicas de la red. Esto equivale a un aumento del valor del parámetro de red (la red cristalina se dilata). Por tanto, las predicciones cualitativas se realizan desplazando la constante de red ligeramente hacia la derecha en la figura 3.6. La anchura de la banda prohibida disminuye con lo que la conductividad aumenta y los materiales son mejores conductores al aumentar la temperatura.

Tabla 3.1.

Material	E _G (0) (eV)	α(·10 ⁻⁴) (eV/K)	β (K)
Ge	0,7437	4,774	235
Si	1,170	4,73	636
GaAs	1,519	5,405	204

Esta disminución del valor de la anchura de la banda prohibida, E_G , se muestra cuantitativamente en la figura 3.7.

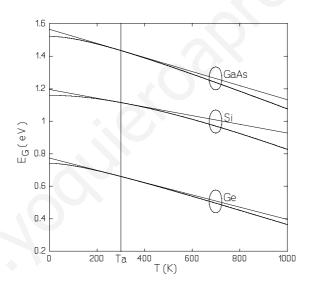


Fig. 3.7. Variación de E_G con la temperatura de Ge, Si y GaAs

Las curvas experimentales se pueden aproximar por rectas (indicadas en la figura) que se ajustan muy bien a temperaturas próximas a la ambiente, la ecuación de ajuste es,

$$E_G(T) = E_G(0) - \frac{\alpha T^2}{T + \beta}$$

los valores de los parámetros $E_G(0)$, α y β para cada material se recogen en la tabla 3.1.

3.6. Masa efectiva.

La aceleración que experimenta un electrón en un cristal entre dos interacciones es

$$\boldsymbol{a} = \frac{d\boldsymbol{v}}{dt} = \frac{d}{dt} \left(\hbar^{-1} \nabla_{\boldsymbol{k}} E(\boldsymbol{k}) \right) = \hbar^{-1} \nabla_{\boldsymbol{k}} \left(\frac{dE(\boldsymbol{k})}{dt} \right) =$$

$$= \hbar^{-1} \nabla_{\boldsymbol{k}} \left(\nabla_{\boldsymbol{k}} E(\boldsymbol{k}) \frac{d\boldsymbol{k}}{dt} \right) = \left(\hbar^{-1} \nabla_{\boldsymbol{k}}^{2} E(\boldsymbol{k}) \right) \frac{d\boldsymbol{k}}{dt}$$

$$(3.13)$$

Por otro lado, con objeto de establecer la analogía con la segunda ley de Newton se iguala la fuerza que experimenta una electrón en el sólido cristalino con el producto de cierta masa por su aceleración,

$$\mathbf{F} = \frac{d\mathbf{p}}{dt} = \hbar \frac{d\mathbf{k}}{dt} = m^* \mathbf{a}$$

con la expresión de a indicada en la ecuación {3.13} queda,

$$\hbar \frac{d\mathbf{k}}{dt} = m^* \left(\hbar^{-1} \nabla_{\mathbf{k}}^2 E(\mathbf{k}) \right) \frac{d\mathbf{k}}{dt}$$

y el valor de m^* resultante es,

$$m^* = \frac{\hbar^2}{\nabla_L^2 E(\mathbf{k})}$$

este parámetro, que es función del diagrama de bandas, E_k , se llama masa efectiva del electrón en la banda correspondiente. Es una magnitud tensorial cuyos índices varían con las componentes del vector de onda. En un sistema de referencia arbitrario la cantidad,

$$m_{ij}^* = \hbar^2 \left(\frac{\partial^2 E(\mathbf{k})}{\partial k_i \partial k_j} \right)^{-1}$$

se denomina tensor de masa efectiva que por definición es simétrico.

Entre las propiedades del tensor de masa efectiva se pueden enumerar las siguientes:

- 1. dado que E_k es característico de cada material, la masa efectiva también lo será,
- 2. el tensor de masa efectiva, m_{ij}^* , es función del momento, $\hbar \mathbf{k}$, por tanto es distinta para electrones que ocupen posiciones distintas,
- 3. la masa efectiva es positiva en las proximidades de un mínimo y negativa en las de un máximo.

Gracias a la manera en que ha sido definida se puede operar con la masa efectiva utilizando el concepto newtoniano de fuerza (magnitud clásica) sustituyendo la masa por el tensor de masa efectiva. Esto último constituye una gran simplificación en el análisis, ya que

se incorporan en dicho parámetro todos los efectos de la red cristalina.

3.7. El hueco como portador de carga.

La existencia de huecos es uno de los resultados más importantes de la teoría de bandas. A los estados vacantes en una banda es a lo que se denomina estado de hueco.

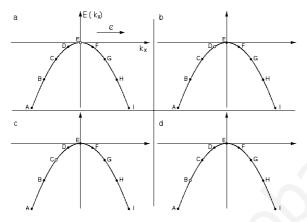


Fig. 3.8. Movimiento de un estado de hueco en el espacio de momentos. Las curvas a, b, c y d representan la evolución temporal

Considerar el movimiento de un estado de hueco en el seno de un campo eléctrico aplicado, figuras 3.8. Inicialmente la banda está llena salvo para un solo estado vacante (E) en el vértice de la banda. Se aplica un campo eléctrico ε en la dirección k_x . El movimiento de los electrones en la banda está regido por,

$$\hbar \frac{dk_x}{dt} = -e \, \epsilon$$

cada electrón cambia en el mismo tiempo el módulo de su vector de onda, k_x .

Se observa en las figuras que la variación de k_x es negativa. El estado vacante (estado de hueco) inicialmente en E se desplaza hasta D y después hasta C. Es decir, el estado de hueco se mueve a lo largo del espacio K junto a los electrones en la dirección decreciente de k_x .

Por otro lado, el vector de onda total de los electrones en una banda llena es cero,

$$\sum_{i} \boldsymbol{k}_{i} = \boldsymbol{0}$$

este resultado expresa que si la banda está llena, todos los pares de estados k y -k están necesariamente llenos y el vector de onda total es cero. Además, en una banda llena, cada electrón cambia el valor de su vector de onda, k, con una velocidad dada por,

$$\frac{d\mathbf{k}}{dt} = \hat{h}^{-1}\mathbf{F}$$

Los electrones no están bloqueados cuando alcanzan el límite de zona sino que son enviados al límite opuesto y comienzan de nuevo su movimiento.

Si la banda está llena salvo un electrón que falta, en el estado *D* por ejemplo, se puede decir que hay un hueco en ese estado *D*. Las propiedades físicas del hueco son aquellas de la totalidad de los electrones en la banda. Esta frase es fundamental en la comprensión del concepto de hueco.

La primera aplicación es al vector de onda del hueco: si falta un electrón en el estado de hueco de vector de onda \mathbf{k}_n , el vector de onda total del sistema es $-\mathbf{k}_n$ ya que ocurre,

$$\sum_{i} \boldsymbol{k}_{i} = -\boldsymbol{k}_{n}$$

así, el vector de onda que hay que atribuir al hueco es,

$$\mathbf{k}_{p} = -\mathbf{k}_{n} \tag{3.14}$$

esto es, el electrón que falta en D de la figura 3.8.B y la posición del hueco se indica como situado en k_D , pero el verdadero vector de onda total del hueco es $-k_D$, que es a su vez el vector de onda del punto F si el hueco está en D.

La ecuación del movimiento de un electrón en un cristal es,

$$\hbar \frac{d\boldsymbol{k}_n}{dt} = \boldsymbol{F}_n = -q(\boldsymbol{\varepsilon} + \boldsymbol{v}_n \times \boldsymbol{B})$$

donde F_n es la fuerza que actúa sobre el electrón. Por $\{3.14\}$, se tiene,

$$\hbar \frac{d\mathbf{k}_{p}}{dt} = -\hbar \frac{d\mathbf{k}_{n}}{dt} = -\mathbf{F}_{n} = +q(\mathbf{\epsilon} + \mathbf{v}_{n} \times \mathbf{B})$$
 (3.16)

Es decir, el movimiento del hueco está descrito por la ecuación del movimiento de una carga positiva en un campo eléctrico. También es la de una carga positiva en un campo magnético a condición de que $\mathbf{v}_p = \mathbf{v}_n$.

La razón por la que el signo de $d\mathbf{k}_n/dt$ es opuesto al de $d\mathbf{k}_n/dt$ se aclara con ayuda de la figura 3.8, el estado vacante se desplaza por $D \rightarrow C \rightarrow B...$, tal y como lo hacen los electrones adyacentes, pero el electrón asociado al hueco se desplaza en sentido inverso, esto es, $F \rightarrow G \rightarrow H...$ en el espacio K. Aquí \mathbf{v}_n representa la velocidad que tendría el electrón que falta.

La velocidad v_p del hueco se determina por el siguiente argumento: si un electrón falta en el estado D la corriente eléctrica transportada por la banda es la del electrón no apareado en el estado F,

$$\boldsymbol{j} = -q\boldsymbol{v}(f) = q[-\boldsymbol{v}(f)]$$

esta corriente puede ser considerada como de una carga positiva de velocidad -v(F). Dado que -v(F) es igual a la velocidad v(D) del estado D, del que se extrajo el electrón, la corriente

puede escribirse como j=qv(D). Se tiene v(D)=-v(F) ya que la derivada de la energía $(dE(k_x)/dk_x)$, que es proporcional a la velocidad) tiene valores opuestos en los puntos D y F. La corriente es consistente con la carga positiva del hueco si su velocidad es igual a la del electrón que falta.

El electrón falta del estado k_n . Si v_n es la velocidad que tendría un electrón en el estado k_n , entonces,

$$\mathbf{v}_{p} = \mathbf{v}_{n} = \hbar^{-1} \nabla_{\mathbf{k}} E(\mathbf{k}_{n})$$

donde $E(\mathbf{k})$ representa la energía de un electrón en el estado \mathbf{k}_n .

Por conveniencia se toma el origen de energías en el vértice de la banda llena o casi llena, ocurre entonces que $E(\mathbf{k}_n)$ será negativa en esta banda. El hueco que se crea al suprimir un electrón tendrá la energía positiva E_p (de acuerdo con el hecho de que la carga del hueco es opuesta a la del electrón),

$$E_p = -E(\boldsymbol{k}_n)$$

Por ser las bandas simétricas (funciones pares en k), ocurre que E(k)=E(-k), se puede interpretar la energía del hueco E_p como $E(k_p)$ ya que $k_p=-k_n$, con esto,

$$E(\mathbf{k}_n) = E(-\mathbf{k}_n) \triangle - E_n(\mathbf{k}_n) \Rightarrow E_n(\mathbf{k}_n) = -E(\mathbf{k}_n)$$

luego la energía del hueco es de signo opuesto a la del electrón ausente, siendo necesaria más energía para separar un electrón de un estado de energía baja que de uno de energía elevada en la banda. La expresión de la velocidad queda,

$$\mathbf{v}_{p} = \hbar^{-1} \nabla_{\mathbf{k}} E(\mathbf{k}_{n}) = -\hbar^{-1} \nabla_{-\mathbf{k}} E(\mathbf{k}_{n}) = -\hbar^{-1} \nabla_{\mathbf{k}_{p}} \left[-E_{p}(\mathbf{k}_{p}) \right] = \hbar^{-1} \nabla_{\mathbf{k}_{p}} E_{p}(\mathbf{k}_{p})$$

donde el gradiente está tomado respecto a k_n .

La ecuación del movimiento de un hueco se obtiene de {3.16} junto con la igualdad de las velocidades,

$$\hbar \frac{d\mathbf{k}_{p}}{dt} = +q(\mathbf{\epsilon} + \mathbf{v}_{p} \times \mathbf{B}) = \mathbf{F}_{p}$$
 (3.22)

ecuación que describe el movimiento de una carga positiva en el seno de un campo electromagnético.

La masa efectiva de un hueco es de signo contrario a la del electrón ausente: la masa efectiva de un electrón en el estado k_n , en el que tiene una velocidad v_n , se define de forma que la ecuación del movimiento toma la forma de la segunda ley de Newton, $\{3.23\}$.

$$m_n \frac{d\mathbf{v}_n}{dt} = -q(\boldsymbol{\varepsilon} + \mathbf{v}_n \times \mathbf{B})$$
 (3.23)

La masa efectiva del hueco se define a partir de una ecuación de la misma forma pero para una carga positiva,

$$m_{p} \frac{d\mathbf{v}_{p}}{dt} = +q(\mathbf{\varepsilon} + \mathbf{v}_{p} \times \mathbf{B})$$
 (3.24)

Dado que $v_p = v_n$ y comparando las ecuaciones del movimiento {3.23} y {3.24},

$$\mathbf{v}_{n} = \mathbf{v}_{p} \triangleq \mathbf{v} \implies \frac{m_{n} \frac{dv}{dt}}{m_{p} \frac{dv}{dt}} = \frac{-q(\varepsilon + v \times B)}{+q(\varepsilon + v \times B)} \implies \frac{m_{n}}{m_{p}} = -1 \implies$$

$$\implies m_{n} = -m_{n}$$

luego la masa efectiva del hueco es la que correspondería al electrón ausente cambiada de signo.

4 SEMICONDUCTORES EN EQUILIBRIO

El gran número de partículas cargadas en el seno de un material semiconductor hace inviable el tratamiento una a una de las mismas con objeto de realizar predicciones sobre la física implicada. Desde un punto de vista microscópico se aplican conceptos estadísticos (mecánica estadística) en la resolución del problema.

En este tema se presenta en primer lugar, adoptando un criterio axiomático, las herramientas matemáticas y los conceptos físicos con los que obtener las relaciones que permiten cuantificar diversos fenómenos asociados a la concentración de partículas.

4.1. Estadística de partículas en los semiconductores.

Para calcular las concentraciones de partículas, necesarias para evaluar su influencia en los fenómenos de conducción en los dispositivos semiconductores, es necesario dar algunas expresiones fundamentales. Aquí, se expresa un postulado y se dan varias definiciones.

Postulado fundamental:

el número infinitesimal de partículas por unidad de volumen (dc) cuya energía está comprendida en el intervalo [E,E+dE] se calcula por,

$$dc = f(E) \cdot dG$$

donde f(E) es la probabilidad de ocupación de los estados cuya energía es del intervalo [E,E+dE] y dG representa al número de estados por unidad de volumen con energía en el intervalo referido.

Se llama función densidad de estados, g(E), al número de estados por unidad de volumen y de intervalo energético. Así,

$$g(E) = \frac{dG}{dE}$$

En términos de la función densidad de estados la concentración de portadores queda

$$dc = f(E)g(E)dE {4.1}$$

Si A es una magnitud cualquiera función de la energía, su valor total para un sistema de partículas definido por f(E) y g(E) es,

$$A_T = \int_{E_n}^{E_f} A(E) f(E) g(E) dE$$

4.1.1. Funciones densidad de estado.

La función densidad de estados próximos al mínimo de las bandas de conducción es,

$$g(E) = 4\pi \left(\frac{2m_{dc}^*}{h^2}\right)^{3/2} \left(E - E_C\right)^{1/2}$$
 {4.2}

donde m_{dc}^* es la llamada masa efectiva para la densidad de estados en la banda de conducción, cuyos valores para el Si y el GaAs son $1.08\,m_e$ y $0.072\,m_e$, respectivamente; h es la constante de Planck y E_C es el nivel de conducción.

La función densidad de estados próximos al máximo de las bandas de valencia es,

$$g(E) = 4\pi \left(\frac{2m_{dv}^*}{h^2}\right)^{3/2} \left(E_V - E\right)^{1/2}$$
 {4.3}

donde m_{dv}^* es la llamada masa efectiva para la densidad de estados en la banda de valencia, cuyos valores para el Si y el GaAs son $0.55 \, m_e$ y $0.43 \, m_e$, respectivamente; h es la constante de Planck y E_V es el nivel de valencia.

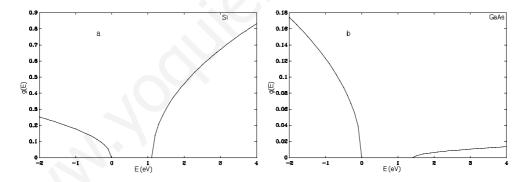


Fig. 4.1. Densidad de estados. a) Si. b) GaAs.

En las figuras 4.1 se puede observar la dependencia con la energía de cada una de estas funciones de densidad de estados para los semiconductores más utilizados.

4.1.2. Funciones densidad de probabilidad de ocupación.

Los electrones son (desde el punto de vista de la mecánica estadística) un grupo de partículas de un conjunto más general llamado fermiones.

Los fermiones se rigen por la función de distribución de Fermi-Dirac,

$$f(E) = \frac{1}{1 + e^{\frac{E - E_F}{kT}}}$$
(4.4)

donde E_F es un "potencial químico" (un determinado valor privilegiado de energía) llamado *nivel de Fermi*, que es función a su vez de la concentración de partículas; k es la constante de Boltzmann y T la temperatura absoluta.

La distribución de Fermi-Dirac representa la probabilidad de que un cierto estado de energía E esté ocupado por un electrón. Al ser un valor de probabilidad su recorrido es el intervalo [0,1]. El nivel de Fermi es la energía para la que la probabilidad de ocupación por un electrón es 1/2.

La forma de f(E) se muestra en la figura 4.2. Nótese que f(E) es simétrica con respecto al punto $E=E_F$. Además, si T=0 K,

$$f(E) = 1$$
, si $E < E_F$; $f(E) = 0$, si $E > E_F$

es decir, todos los estados permitidos de energías $E < E_F$ están ocupados y los de energías $E > E_F$ se hallan vacíos. Así, en un metal, a T = 0 K el nivel de Fermi se encontrará dentro de la banda de conducción (ya que conduce) mientras que en un semiconductor ocurre que $E_V < E_F < E_C$, esto es, el nivel de Fermi se ubica dentro de la banda prohibida.

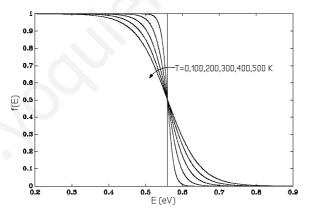


Fig. 4.2. Distribución de Fermi-Dirac para electrones en Si

De la figura 4.2 se deduce que si la energía toma el valor $E_l=E_F-3kT$, el término exponencial toma un valor superior a 200 y $f(E)\approx 0$; por su parte, si la energía toma el valor $E_h=E_F+3kT$, la exponencial toma un valor inferior a 0.05 y $f(E)\approx 1$. En esos casos la distribución de Fermi-Dirac se aproxima por,

$$f(E) \approx 1 - e^{\frac{E - E_F}{kT}}, \quad si \ E < E_F - 3kT$$

$$f(E) \approx e^{-\frac{E - E_F}{kT}}, \quad si \ E > E_F + 3kT$$

$$(4.5)$$

La probabilidad de ocupación por huecos es la probabilidad de que un estado de energía *E* no esté ocupado, esto es:

$$f_p(E) = 1 - f(E) = \frac{1}{1 + e^{\frac{E_F - E}{kT}}}$$
 {4.6}

donde E representa a la energía de electrón.

4.2. Expresiones generales para la concentración de portadores.

Las concentraciones de electrones en la banda de conducción y de huecos en la de valencia se calculan integrando {4.1} en un intervalo adecuado de energías.

Utilizando las ecuaciones que expresan la función densidad de estados próximos al mínimo de la banda de conducción (ecuación {4.2}), la función densidad de estados próximos al máximo de la banda de valencia (ecuación {4.3}), la función de distribución de Fermi-Dirac (ecuaciones {4.4} para los electrones y {4.6} para los huecos) se tienen las ecuaciones,

$$n = \int_{E_{c}}^{E_{c_{M}}} 4\pi \left(\frac{2m_{n}}{h^{2}}\right)^{\frac{3}{2}} \frac{\left(E - E_{c}\right)^{\frac{1}{2}}}{1 + e^{\frac{E - E_{r}}{kT}}} dE \; ; \qquad p = \int_{E_{v_{m}}}^{E_{v}} 4\pi \left(\frac{2m_{p}}{h^{2}}\right)^{\frac{3}{2}} \frac{\left(E_{v} - E\right)^{\frac{1}{2}}}{1 + e^{\frac{E_{r} - E}{kT}}} dE$$
 (4.7)

donde se ha realizado un cambio de notación para las masas efectivas de los electrones y los huecos $(m_n = m_{dc}^*, m_p = m_{dv}^*)$, y los valores de energía E_{CM} y E_{Vm} representan los valores máximo y mínimo posibles de la energía de las bandas de conducción y de valencia respectivamente. Estos valores pueden reemplazarse en la práctica por ∞ y $-\infty$ dado el valor despreciable de la función densidad de probabilidad de electrones y huecos (distribución de Fermi-Dirac, ecuación $\{4.4\}$) en la región que se incluye en el intervalo de integración.

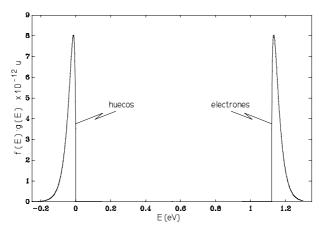


Fig. 4.3. Distribución de Fermi-Dirac para electrones en Si

El valor de las integrales de las ecuaciones $\{4.7\}$ coincide con las áreas bajo las curvas en la figura 4.3 donde se representa el producto f(E)g(E) frente a la energía de los electrones. El cálculo se ha realizado para un "semiconductor intrínseco" (en él: $n=p=n_i$) a temperatura ambiente.

Con los siguientes cambios de variable,

$$\varepsilon_n = \frac{E - E_C}{kT}, \quad \varepsilon_p = \frac{E_V - E}{kT} \implies \varepsilon_{nF} = \frac{E_F - E_C}{kT}, \quad \varepsilon_{pF} = \frac{E_V - E_F}{kT}$$
(4.8)

las integrales {4.7} se transforman en,

$$n = 4\pi \left(\frac{2m_n kT}{h^2}\right)^{\frac{3}{2}} \int_0^{\infty} \frac{\varepsilon_n^{\frac{1}{2}}}{1 + e^{\varepsilon_n - \varepsilon_{nF}}} d\varepsilon_n ; \quad p = 4\pi \left(\frac{2m_p kT}{h^2}\right)^{\frac{3}{2}} \int_0^{\infty} \frac{\varepsilon_p^{\frac{1}{2}}}{1 + e^{\varepsilon_p - \varepsilon_{pF}}} d\varepsilon_p$$
 (4.9)

Utilizando la integral de Fermi de orden m definida como,

$$F_m(x_o) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{x^m dx}{1 + e^{x - x_o}}$$

y siendo N_C y N_V como las densidades equivalentes de estados para las bandas de conducción y de valencia, respectivamente, dadas por las ecuaciones

$$N_C = 2 \left(\frac{2\pi m_n kT}{h^2} \right)^{\frac{3}{2}}; \quad N_V = 2 \left(\frac{2\pi m_p kT}{h^2} \right)^{\frac{3}{2}}$$
 (4.10)

donde a temperatura ambiente los valores de N_C y N_V son tres órdenes de magnitud inferiores a las densidades típicas de átomos en sólidos cristalinos. Las $\{4.9\}$ se transforman en función de la integral de Fermi de orden 1/2 y de las densidades equivalentes de estado en las, la integral de Fermi no es una función que pueda expresarse de forma analítica. Los cálculos

$$n = N_C F_{\frac{1}{2}}(\varepsilon_{nF}) = N_C F_{\frac{1}{2}}(\frac{E_F - E_C}{kT}) \; ; \quad p = N_V F_{\frac{1}{2}}(\varepsilon_{pF}) = N_V F_{\frac{1}{2}}(\frac{E_V - E_F}{kT})$$

con ella requieren procedimientos numéricos. Sin embargo, para ciertos semiconductores (denominados no degenerados) se pueden aproximar por la función *gamma de Euler* (Γ) multiplicada por un factor exponencial en la posición de los niveles de energía.

4.3. Concentración intrínseca en semiconductores no degenerados.

A temperaturas distintas al cero absoluto, la agitación térmica de los electrones provoca saltos de los mismos desde la banda de valencia a la de conducción dejando cierto número de huecos en la banda de valencia igual al de electrones en la de conducción. Un semiconductor se dice intrínseco si contiene una muy pequeña cantidad de átomos de impurezas comparada con los electrones y huecos generados por la agitación térmica.

En la banda de conducción hay un gran número de estados permitidos. Sin embargo, para semiconductores intrínsecos habrá sólo unos pocos electrones en la banda de conducción y por tanto, la probabilidad de que un electrón ocupe uno de estos estados es pequeña. Hay también un gran número de estados permitidos en la banda de valencia. Por contra, la mayor parte están ocupados por electrones. De modo que la probabilidad de que un electrón ocupe uno de esos estados es prácticamente la unidad. Habrá sólo unos pocos estados vacantes, esto es, huecos en la banda de valencia. Puede verse que el nivel de Fermi (E_F) está situado en las proximidades de la mitad de la banda prohibida. Aproximando la distribución de Fermi-Dirac por el valor propuesto en $\{4.5\}$ (los semiconductores en los que es posible realizar esta aproximación se llaman semiconductores no degenerados) e introduciendo $\{4.2\}$ y $\{4.5\}$ en $\{4.1\}$ queda,

$$n = 4\pi \left(\frac{2m_n}{h^2}\right)^{\frac{3}{2}} \int_{E_c}^{\infty} (E - E_c)^{\frac{1}{2}} e^{-\frac{E - E_r}{kT}} dE$$

y haciendo el cambio de variable propuesto en {4.8} se obtiene la integral expresada por,

$$x = E - E_C \implies n = 4\pi \left(\frac{2m_n kT}{h^2}\right)^{\frac{3}{2}} e^{\frac{E_r - E_C}{kT}} \int_{0}^{\infty} x^{\frac{1}{2}} e^{-x} dE$$
 (4.11)

La integral gamma de Euler se define por,

$$\Gamma(a+1) = \int_{0}^{\infty} \xi^{a} e^{-\xi} d\xi \tag{4.12}$$

verificándose que,

$$\Gamma(\frac{3}{2}) = \frac{1}{2}\Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$$

Introduciendo {4.12} en {4.11} se obtiene,

$$n = N_C e^{-\frac{E_C - E_F}{kT}}$$
 {4.13}

donde se ha hecho uso de $\{4.10\}$. La densidad efectiva de estados en la banda de conducción (N_C) , toma a temperatura ambiente los valores $2.8 \cdot 10^{19} \text{ cm}^{-3}$ para el Si y $4.7 \cdot 10^{17} \text{ cm}^{-3}$ para el GaAs.

Procediendo de manera análoga,

$$p = N_V e^{-\frac{E_F - E_V}{kT}}$$
 {4.14}

 N_V es $1.04 \cdot 10^{19}$ cm⁻³ en Si y $7.0 \cdot 10^{18}$ cm⁻³ en GaAs a temperatura ambiente.

Para un semiconductor intrínseco el número de electrones por unidad de volumen en la banda de conducción es igual al número de huecos por unidad de volumen en la banda de valencia, esta concentración se denomina densidad intrínseca de portadores (n_i) . El nivel de Fermi en un semiconductor intrínseco se llama nivel intrínseco (denotado E_i) y se obtiene al igualar n y p en las expresiones anteriores,

$$n = p \implies E_i = \frac{E_C + E_V}{2} + \frac{kT}{2} \log \left(\frac{N_V}{N_C} \right) = \frac{E_C + E_V}{2} - \frac{3kT}{4} \log \left(\frac{m_n}{m_p} \right)$$
 (4.15)

a temperatura ambiente el segundo sumando es múcho menor que el primero. Por tanto, el nivel de Fermi intrínseco E_i está muy próximo al punto medio de la banda prohibida.

La densidad intrínseca de portadores se obtiene de las ecuaciones {4.13}, {4.14} y {4.15}

$$n \cdot p = n_i^2 \implies n_i = \sqrt{N_C N_V} e^{\frac{E_G}{2kT}}$$
 (4.16)

donde $E_G = E_C - E_V$.

La ecuación $n p = n_i^2$ se denomina ley de acción de masas (l.a.m.). Esta ley es válida para semiconductores intrínsecos y los dopados (semiconductores extrínsecos) en equilibrio térmico (el concepto de equilibrio térmico se entiende, en este contexto, como aquella situación que se alcanza cuando, en ausencia de excitación exterior, una muestra de material semiconductor se mantiene a temperatura constante durante "mucho" tiempo). En un semiconductor extrínsico el incremento en la concentración de un tipo de portador tiende a reducir la concentración del otro por un proceso llamado recombinación; así, el producto de las concentracións de ambos tipos de portadores permanecerá constante a cierta temperatura. Le concentración intrínseca se calcula imponiendo $E_F = E_i$ en una de las $\{4.13\}$ o $\{4.14\}$,

$$n_i = N_C e^{-\frac{E_c - E_i}{kT}} = N_V e^{-\frac{E_i - E_V}{kT}}$$

con este resultado en {4.13} o {4.14} de nuevo se puede escribir,

$$n = N_C e^{-\frac{E_C - E_i + E_i - E_F}{kT}} = N_C e^{-\frac{E_C - E_i}{kT}} e^{\frac{E_F - E_i}{kT}} = n_i e^{\frac{E_F - E_i}{kT}}; \quad p = n_i e^{\frac{E_i - E_F}{kT}}$$

que son útiles expresiones de las concentraciones de portadores en términos de la concentración y el nivel intrínsecos.

Con objeto de hacer explícita la dependencia de la concentración intrínseca con la

temperatura se introducen las ecuaciones $\{4.13\}$, $\{4.14\}$ y la expresión que da la dependencia de la anchura de la banda prohibida con la temperatura (en la aproximación al entorno de la temperatura ambiente $E_G(T)=E_{G0}-mT$) en la ecuación $\{4.16\}$ para dar,

$$n_{i} = \left[2 \left(\frac{2\pi k}{h^{2}} (m_{n} m_{p})^{1/2} \right)^{3/2} e^{\frac{m}{2k}} \right] T^{3/2} e^{-\frac{E_{GO}}{2kT}} = H T^{3/2} e^{-\frac{E_{GO}}{2kT}}$$
 (4.18)

donde el factor H es independiente de la femperatura. Las curvas para el Si y el GaAs pueden verse en la figura 4.4 donde a temperatura ambiente $n_i(Si)=1.45\cdot 10^{10}cm^{-3}$ y $n_i(GaAs)=1.79\cdot 10^6cm^{-3}$, estos valores reflejan el hecho de que el material de mayor ancho de banda prohibida tiene menor concentración intrínseca.

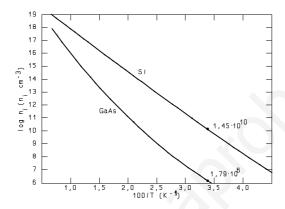


Fig. 4.4. Concentraciones intrínsecas en Si y GaAs en función de la inversa de la temperatura

4.4. Impurezas.

En los cristales semiconductores reales existen defectos en las redes cristalinas que son imposibles de evitar totalmente. De hecho, algunos de estos defectos, las impurezas donadoras y las aceptoras, se introducen en el cristal de manera intencionada y controlada pues la operación de casi todos los dispositivos semiconductores se basa en la presencia de estas impurezas.

Todos los defectos modifican el diagrama de bandas del semiconductor puro introduciendo estados de energía permitidos adicionales. Estos estados de energía pueden estar en el seno de la banda prohibida con lo que se hace posible la presencia de algunos portadores con niveles de energía prohibidos en el semiconductor ideal.

Un semiconductor con impurezas introducidas de forma controlada se dice que está dopado o que es extrínseco. Si no está dopado se llama intrínseco.

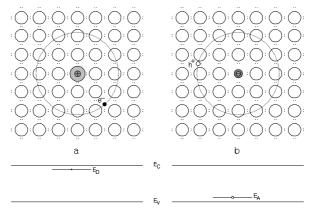


Fig. 4.5. Efectos de la introducción de una impureza a) donadora, b) aceptora

Considérese silicio al que se ha introducido impurezas del grupo V_A de la tabla periódica. Suponer que en el proceso de introducción uno de estos átomos de impureza ha sustituido en el cristal a otro de silicio³ (figura 4.5.a). El modelo de enlaces ofrece una explicación plausible en este caso: dado que los átomos de este grupo poseen cinco electrones de valencia cuatro de ellos satisfarán los enlaces con sus vecinos, si la temperatura es baja el electrón restante, que no está ligado por ningún enlace, queda "suelto" en las proximidades de la impureza que ejerce cierta atracción de tipo coulombiana sobre él, pues al "perder" un electrón queda como ión positivo. Este electrón abandonará la zona de influencia del ión si se le aporta una pequeña cantidad de energía, pasando a formar parte de los electrones de conducción del material. Desde el punto de vista del modelo de bandas lo que ocurre es que la impureza modifica el diagrama de bandas introduciendo un nivel de energía permitido en la banda prohibida. Este nivel no puede encontrarse en el seno de la banda de conducción porque el electrón no es, inicialmente, uno de los electrones de conducción pues está "atrapado" por el ión que lo introdujo. Como con un pequeño aporte energético el electrón pasa a ser de conducción, necesariamente el nivel permitido ha de encontrarse muy próximo al nivel de conducción. Por su parte, la impureza ionizada es una carga fija en la red cristalina que no aporta su carga a la conducción. Esto se esquematiza en la parte inferior de la figura 4.5.a. En todo caso, el efecto de introducir un átomo del grupo V_A de la tabla periódica es el de donar electrones de conducción. Por eso a estas impurezas se las denomina donadoras. Asimismo, el nivel de energía introducido se llama nivel donador, E_D .

La situación complementaria se alcanza al dopar con una impureza del grupo III_A de la tabla periódica (figura 4.5.b). En este caso el átomo de impureza sólo tiene tres electrones

³Si la impureza sustituye un átomo de los del cristal se dice que ocupa posición substitucional. Otra posibilidad es la posición intersticial en la que la impureza se aloja entre los átomos sin sustituir a ninguno.

en su última capa, los cuales formarán enlaces con tres de los átomos de silicio que lo rodean. El enlace insatisfecho arrancará uno de los electrones de un enlace cercano entre dos átomos de silicio generando una ausencia de electrón que, a bajas temperaturas, se mantendrá en las proximidades de la impureza ionizada, pero si gana suficiente energía abandonará dicha región aportando su carga a la corriente de huecos. El modelo de bandas permite decir que la introducción de la impureza del grupo III_A supone la aparición de un nivel de energía permitido en las proximidades del nivel de valencia (parte inferior de la figura 4.5.b). Si uno de los electrones de valencia gana suficiente energía se producirá la transición de éste hacia ese nivel y se creará un hueco en la banda de valencia. Es claro que el efecto de este tipo de impurezas es la captura de un electrón, por eso se denominan impurezas aceptoras y al nivel de energía introducido nivel aceptor, E_A .

Los niveles de energía donadores introducidos por algunas impurezas en silicio se muestran en la tabla 4.1. Están dados desde el nivel de conducción, es decir, $X=E_C-E_D$, donde X es el dato indicado en la tabla en electrón-Volts.

Silicio	Sb	P	As	Ti	С	Pt	Au	О
X (eV)	0,039	0,045	0,054	0,21	0,25 0,77	0,82	0,83	0,16 0,51

Tabla 4.1. Niveles donadores introducidos por algunos elementos en el silicio.

Se observa que algunas impurezas introducen más de un nivel donador. Esto ocurre si el átomo de impureza tiene más de un electrón de valencia, al introducirlo en la red puede ceder con cierta facilidad el primer electrón, si se suministra suficiente energía cederá más electrones, por eso los niveles donadores sucesivos están más alejados del nivel de conducción.

En la tabla 4.2 se muestran los niveles aceptores introducidos por algunas impurezas en silicio. En este caso las energías indicadas están referidas al nivel de valencia, $X=E_A-E_V$.

En el GaAs los niveles donadores $X_D = E_C - E_D$ son los de la tabla 4.3 y los aceptores $X_A = E_A - E_V$ los de la tabla 4.4, algunas impurezas, como el silicio o el carbono, pueden actuar como donadoras o aceptoras, esto se debe a que en la red del arseniuro de galio pueden ser sustituidos átomos de arsénico o de galio, en el primer caso se origina un nivel aceptor y en el segundo uno donador.

Silicio	В	Al	Ga	In	Pd	Pt	Au	О
X (eV)	0,045	0,067	0,072	0,16	0,34	0,87 0,36	0,58	0,74 0,41

Tabla 4.2. Niveles aceptores introducidos por algunos elementos en el silicio.

Los semiconductores dopados con impurezas donadoras son tipo n. Los dopados con impurezas aceptoras son tipo p. Se llama semiconductores compensados a aquellos que

Tabla 4.3. Niveles donadores introducidos por algunos elementos en el arseniuro de galio.

GaAs	S	Se	Sn	Те	Si	C	0
X_D (eV)	0,006	0,006	0,006	0,03	0,0058	0,00 6	0,4 0,75

Tabla 4.4. Niveles aceptores introducidos por algunos elementos en el arseniuro de galio.

GaAs	Be	Mg	Zn	Cd	Si	C	Cu	Cr
X_A (eV)	0,028	0,028	0,031	0,035	0,035	0,026	0,44 0,24	0,79

contienen ambos tipos de impurezas en igual proporción, presentan un carácter similar al intrínseco. Si domina uno de los tipos de impureza el semiconductor está parcialmente compensado. La concentración de impurezas donadoras se denota por N_D . N_D^+ será la concentración de impurezas donadoras ionizadas. Análogamente se usan N_A y N_A^- .

Los portadores cuya concentración domina se llaman mayoritarios y los del tipo contrario son los minoritarios.

En los semiconductores extrínsecos las concentraciones de electrones y huecos no son iguales. Esta relación se sustituye por la ecuación de neutralidad de la carga según la cual la densidad de carga global es nula en el volumen del semiconductor, si la distribución de impurezas es uniforme,

$$\rho = q (p + N_D^+ - n - N_A^-) = 0 \implies p + N_D^+ = n + N_A^-$$

con la ecuación $n_n p_n = n_i^2$ en un semiconductor tipo n,

$$n_n = \frac{1}{2} \left[N_D^+ - N_A^- + \sqrt{(N_D^+ - N_A^-)^2 + 4 n_i^2} \right]$$

donde el subíndice n indica el tipo de semiconductor.

Para los tipo p,

$$p_p = \frac{1}{2} \left[N_A^- - N_D^+ + \sqrt{(N_A^- - N_D^+)^2 + 4 n_i^2} \right]$$
 (4.21)

Normalmente $\left|N_{D}^{+}-N_{A}^{-}\right| >> n_{i}^{2}$ y las ecuaciones anteriores se reducen a

$$n_n \approx N_D^+ - N_A^-$$
 si $N_D^- > N_A^-$; $p_p \approx N_A^- - N_D^+$ si $N_A^- > N_D^-$

Se ha indicado que si un electrón recibe suficiente energía puede transitar desde el nivel donador hasta el de conducción, o bien desde el nivel de valencia hasta el aceptor para generar portadores libres. Surge la pregunta de la concentración de impurezas que, bajo determinadas condiciones, se hallan ionizadas, es decir: ¿cuántas impurezas están ionizadas a cierta temperatura?. Para dar respuesta a esta pregunta se recurre a la estadística.

El estado introducido por la impureza en la banda prohibida puede ser ocupado por un solo electrón, pero éste puede tener cualquiera de los valores de espín posibles. Luego estos estados presentan un nivel de degeneración 2. La función de distribución no es exactamente la de Fermi-Dirac, sino,

$$f(E) = \left[1 + \frac{1}{2} \exp(\frac{E - E_F}{kT}) \right]^{-1}$$
 {4.23}

Una impureza donadora cuyo nivel donador sea $E_{\scriptscriptstyle D}$ estará ionizada si el estado que introduce está vacante de electrón. Por lo tanto la concentración de impurezas donadoras ionizadas es,

$$N_D^+ = N_D[1 - f(E_D)] = \frac{N_D}{1 + 2 \exp(\frac{E_F - E_D}{kT})}$$

La concentración de impurezas aceptoras ionizadas se evalúa teniendo presente que la impureza estará ocupada por un electrón con energía E_A ,

$$N_A^- = N_A f(E_A) = \frac{N_A}{1 + \frac{1}{2} \exp(\frac{E_A - E_F}{kT})}$$

Se suele despreciar la degeneración del estado introducido por la impureza y utilizar la estadística de Fermi-Dirac en lugar de {4.23}. Así,

$$N_{D}^{+} = \frac{N_{D}}{1 + \exp(\frac{E_{F} - E_{D}}{kT})}; \quad N_{A}^{-} = \frac{N_{A}}{1 + \exp(\frac{E_{A} - E_{F}}{kT})}$$

$$(4.26)$$

Por ejemplo, considérese una muestra de silicio dopada con 10^{16} átomos de fósforo por centímetro cúbico a la temperatura ambiente. Calcular el porcentaje de impurezas ionizadas. En la tabla 4.1 se lee: E_D - E_i = E_C -0,045 eV. Al ser E_C =0,56 eV, queda que la posición del nivel donador es E_D - E_i =0,515 eV.

Para el cálculo pedido se necesita, además, conocer la posición del nivel de Fermi. Ésta se evaluará por un procedimiento iterativo. Se supone inicialmente que todas las impurezas están ionizadas, es decir n≈10¹⁶cm⁻³, luego,

$$E_F - E_i = kT \ln(\frac{n}{n_i}) \approx 0,0259 \ln(\frac{10^{16}}{1,45 \cdot 10^{10}}) = 0,354 \ eV \implies$$

$$\Rightarrow N_D^+ = \frac{N_D}{1 + \exp(\frac{E_F - E_D}{kT})} = \frac{10^{16}}{1 + \exp(\frac{0.354 - 0.515}{0.0259})} = 9,98 \cdot 10^{15} cm^{-3}$$

Haciendo ahora n≈9,98·10¹⁵cm⁻³, y repitiendo cálculos,

Se concluye, por lo tanto, que la concentración de impurezas ionizadas es

$$E_F - E_i = 0.0259 \ln(\frac{9.98 \cdot 10^{15}}{1.45 \cdot 10^{10}}) = 0.348 \ eV \implies N_D^+ = \frac{10^{16}}{1 + \exp(\frac{0.348 - 0.515}{0.0259})} = 9.98 \cdot 10^{15} cm^{-3}$$

 $N_D^+=9.98\cdot10^{15}$ cm⁻³ (observar que se obtuvo ya en la primera iteración), por lo tanto

$$\frac{N_D^+}{N_D} \cdot 100 = \frac{9.98 \cdot 10^{15}}{10^{16}} \cdot 100 = 99.8 \%$$

la conclusión que se obtiene es que a temperatura ambiente prácticamente todas las impurezas están ionizadas y la hipótesis de partida es válida. Este resultado es de aplicación bastante general en otras situaciones en las que los semiconductores se hallen operando a temperatura cercana a la ambiente.

4.5. Algunas dependencias con la temperatura.

En el apartado 3.5 del tema anterior se discutió cualitativamente la relación que liga a la anchura de la banda prohibida con la temperatura. En este mismo tema (ver figura 4.4) se ha presentado una relación cuantitativa que permite observar la influencia de la temperatura sobre la concentración intrínseca. Con las expresiones {4.13}, {4.14}, {4.20} y {4.21} se puede evaluar la dependencia con la temperatura de la anchura de la banda prohibida y del nivel de Fermi y, por ende, de la concentración de portadores.

La posición del nivel de Fermi en función de la temperatura para silicio, dada la concentración uniforme de impurezas donadoras o aceptoras, se muestra en la figura 4.6. En la propia figura se indica la concentración correspondiente a cada nivel de Fermi. Por encima del nivel intrínseco se dan las concentraciones de impurezas donadoras y por debajo los de las aceptoras. Nótese que en semiconductores tipo n el nivel de Fermi se encuentra por encima del intrínseco y por debajo en los tipo p. En la misma figura 4.6 puede observarse la variación que experimenta la anchura de la banda prohibida.

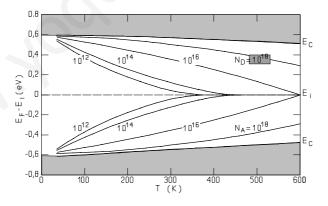


Fig. 4.6. Dependencia del nivel de Fermi con la temperatura y la concentración de impurezas en el silicio. La concentración de impurezas se expresa en cm⁻³

La figura 4.7 muestra la variación de la concentración de electrones en silicio con dopaje uniforme de valor $N_D=10^{15}cm^{-3}$. En la región de temperaturas bajas la energía térmica en el cristal no es suficiente para que se ionicen las impurezas. El semiconductor tiene los niveles donadores ocupados por electrones que no pueden transitar hacia la banda de conducción. El aumento de la concentración de portadores que se observa coincide con el correspondiente a la concentración intrínseca. Al aumentar la temperatura la concentración de electrones alcanza el valor de la concentración de impurezas. En este tramo los electrones atrapados en los niveles donadores adquieren suficiente energía térmica como para efectuar el salto hacia la banda de conducción, es decir, las impurezas donadoras se van ionizando.

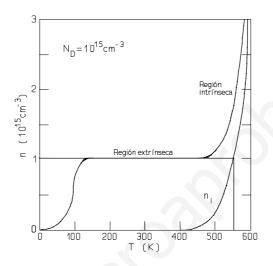


Fig. 4.7. Dependencia de la concentración de electrones con la temperatura en el silicio tipo n con N_D=10¹⁵cm⁻³

Una vez alcanzado el valor de la concentración de impurezas se observa una amplia región (que contiene a la temperatura ambiente) en la que n no varía. Esta es la región extrínseca que se extiende por unos 350 K. A partir de un cierto valor de temperatura la concentración intrínseca se hace comparable a la concentración de impurezas. El aumento de la concentración intrínseca está asociado a las transiciones desde la banda de valencia a la de conducción por efectos térmicos. En este punto comienza la región intrínseca en el que el aumento con la temperatura de la concentración de electrones es, de nuevo, el correspondiente a la intrínseca.

5 SEMICONDUCTORES EN DESEQUILIBRIO

Con la teoría desarrollada hasta el momento en los temas anteriores no es posible hacer predicciones acerca de la respuesta de los semiconductores en situaciones fuera del equilibrio térmico; sólo se puede evaluar el funcionamiento del material en equilibrio. Sin embargo, todos los dispositivos electrónicos se encuentran excitados durante su operación normal en los circuitos, habitualmente por campos eléctricos o por radiaciones luminosas. Así es preciso dar cuenta de este funcionamiento fuera del equilibrio.

El procedimiento a seguir consistirá en establecer las hipótesis necesarias para reducir el problema a una situación lo suficientemente próxima al equilibrio. En este contexto juega un papel esencial la llamada hipótesis de operación en bajo nivel de inyección. Este concepto se aborda en el apartado siguiente.

Más adelante en el tema se estudia la aplicación del principio general de tendencia al estado de equilibrio en los semiconductores que inicialmente se hallan en desequilibrio y son abandonados a sí mismos. Estos procesos son la generación y la recombinación de portadores. El tema finaliza analizando los efectos de los campos elevados sobre los semiconductores.

5.1. Inyección de portadores.

El equilibrio térmico se caracteriza porque en él se satisface la ley de acción de masas, que se expresa por la relación $pn=n_i^2$. Si en un semiconductor se introducen portadores de manera que $pn\neq n_i^2$, éste se halla fuera del equilibrio. Si el proceso de introducción de portadores hace que $pn>n_i^2$ se está ante una inyección de portadores, y si es $pn< n_i^2$ el proceso se llama extracción de portadores. Existen varios métodos de inyección de portadores como son la excitación óptica o la polarización directa de una unión pn.

La concentración de portadores inyectados se denomina exceso de portadores, y se denota por Δn o Δp , según sean electrones o huecos. El cociente entre el mayor valor del exceso de portadores y la concentración de portadores mayoritarios correspondiente a la situación de

equilibrio se denomina nivel de inyección. Así, para un semiconductor tipo n, el nivel de inyección será

$$m\acute{a}x\left[\frac{\Delta n}{n_{n0}}, \frac{\Delta p}{n_{n0}}\right]$$

donde el significado de la notación utilizada es la siguiente: la cantidad X_{γ} representa el valor de la magnitud X en un semiconductor tipo Y. El subíndice 0 representa un valor de equilibrio. Así, n_{n0} es la concentración de electrones en equilibrio de un semiconductor tipo n, p_{n0} sería la concentración de huecos en equilibrio de un semiconductor tipo n, n_n y p_p representarán las concentraciones de mayoritarios, y n_p , p_n las de minoritarios.

En un semiconductor tipo p la definición de nivel de inyección es,

$$m \acute{a} x \left[\frac{\Delta n}{p_{p0}}, \frac{\Delta p}{p_{p0}} \right]$$

Hasta aquí se ha admitido que el exceso de electrones y de huecos pueden ser cantidades distintas. En lo sucesivo se considerará que los procesos de inyección se producen por pares, es decir, la inyección de un electrón conlleva la de un hueco, con esto $\Delta n = \Delta p$, y los niveles de inyección en los semiconductores tipo n y tipo p serán, respectivamente,

$$\frac{\Delta n}{n_{n0}}$$
, $\frac{\Delta n}{p_{p0}}$

Suponiendo conocido el valor del exceso de portadores, la concentración de los mismos se puede evaluar añadiendo a las concentraciones de equilibrio el exceso. Por ejemplo en un semiconductor tipo n las concentraciones de ambos tipos de portadores será,

$$n_n = n_{n0} + \Delta n; \ p_n = p_{n0} + \Delta n$$
 {5.1}

y para uno tipo p,

$$p_p = p_{p0} + \Delta n; \ n_p = n_{p0} + \Delta n$$

Si el nivel de inyección es despreciable frente a la unidad se dice que el semiconductor en desequilibrio se encuentra sometido a un bajo nivel de inyección. Por contra, si el nivel de inyección es apreciable se dice que el semiconductor se encuentra en alto nivel de inyección.

Así, si la inyección es en bajo nivel, de la primera de las ecuaciones {5.1} dividiendo por la concentración de mayoritarios en equilibrio,

$$\frac{n_n}{n_{n0}} = 1 + \frac{\Delta n}{n_{n0}} \approx 1 \implies n_n \approx n_{n0}$$

es decir, la concentración de mayoritarios en desequilibrio coincide aproximadamente con la correspondiente al equilibrio.

Considerar por ejemplo una muestra de silicio tipo n en la que $N_D=10^{15}cm^{-3}$. Con la hipótesis de ionización total y en la notación anterior

$$n_{n0} = N_D = 10^{15} \text{ cm}^{-3}; \ p_{n0} = \frac{n_i^2}{n_{n0}} = 1,45 \cdot 10^5 \text{ cm}^{-3}$$

por tanto si $\Delta n = \Delta p = 10^{12} cm^{-3}$,

$$\frac{\Delta n}{n_{v0}} = \frac{10^{12}}{10^{15}} = 10^{-3} \ll 1$$

y el nivel de inyección será bajo. Nótese que,

$$n_n = n_{n0} + \Delta n = 10^{15} + 10^{12} \approx 10^{15} \text{ cm}^{-3} = n_{n0}$$

 $p_n = p_{n0} + \Delta n = 1,45 \cdot 10^5 + 10^{12} \approx 10^{12} \text{ cm}^{-3} = \Delta n$

como se ha dicho, la concentración de portadores mayoritarios coincide aproximadamente con la de mayoritarios en equilibrio. Por tanto los cálculos en los que estén involucrados los mayoritarios se pueden realizar como si el semiconductor se encontrase en equilibrio. Para los minoritarios no puede realizarse aproximación alguna a priori.

Si
$$\Delta n = \Delta p = 10^{17} cm^{-3}$$
,

$$\frac{\Delta n}{n_{v0}} = \frac{10^{17}}{10^{15}} = 10^2$$

que no es despreciable frente a la unidad y el nivel de inyección será alto. En este caso

$$n_n = n_{n0} + \Delta n = 10^{15} + 10^{17} \approx 10^{17} \text{ cm}^{-3} = \Delta n$$

 $p_n = p_{n0} + \Delta n = 1,45 \cdot 10^5 + 10^{17} \approx 10^{17} \text{ cm}^{-3} = \Delta n$

las concentraciones de portadores mayoritarios y la de los minoritarios coinciden en la práctica con el exceso de portadores y el semiconductor responderá como si fuese intrínseco.

5.2. Procesos de generación y recombinación.

Si no se satisface la condición de equilibrio térmico $(pn=n_i^2)$ puede ocurrir que sea $pn>n_i^2$, inyección de portadores, o alternativamente $pn< n_i^2$, extracción de portadores. En cualquiera de los dos casos, si un sistema se abandona a sí mismo partiendo del no equilibrio se ponen marcha procesos de retorno al equilibrio.

Si una excitación externa produce una inyección de portadores, al desaparecer se inicia el mecanismo llamado recombinación y promoverá la desaparición del exceso de minoritarios mediante el aniquilamiento con portadores mayoritarios. La energía liberada por este mecanismo puede ser emitida en forma de luz (emisión de fotones) o disipada en forma de calor dependiendo de la naturaleza del proceso. En el primer caso, esto es si se emiten fotones la recombinación se dice que es radiativa. Si, por contra, la liberación de energía se produce en forma de calor la recombinación se denomina no radiativa. Por otro lado, los procesos de recombinación pueden clasificarse atendiendo al tipo de banda, directa o indirecta del semiconductor en que se producen, surge la recombinación directa en el primer caso y la recombinación indirecta en el segundo.

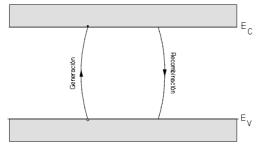


Fig. 5.1 Procesos de generación y recombinación

Si la situación de partida es la extracción de portadores se pone en marcha el mecanismo de generación que incrementa las concentraciones de ambos tipos de portadores hasta situarlos en sus correspondientes niveles de equilibrio. Este mecanismo absorbe energía que puede provenir de la energía térmica o de alguna otra fuente energética externa al material.

5.2.1. Recombinación directa.

Para el desarrollo de este punto se parte de las situaciones en las que el semiconductor se halla en equilibrio para, posteriormente, aplicar las definiciones y conclusiones deducidas al caso del no equilibrio.

En un semiconductor de banda directa en equilibrio térmico, las vibraciones térmicas de los átomos de la red produce la ruptura de algunos enlaces entre átomos vecinos. Cuando se rompe un enlace se genera un par electrón-hueco. En términos del modelo de enlaces, la energía térmica que es absorbida por el electrón de valencia permite éste abandone el átomo al que pertenece creando una vacante de electrón en el enlace roto. Este mismo hecho se expresa en términos del modelo de bandas diciendo que por la absorción de cierta cantidad energía térmica se produce el tránsito de un electrón desde la banda de valencia hacia la banda de conducción, salvando la barrera de energía prohibida, y apareciendo un hueco en la banda de valencia, esto es, se genera un par electrón-hueco.

Los procesos de generación de portadores se caracterizan por la velocidad de recombinación térmica, G_{th} , definida como el número de pares electrón-hueco generados por unidad de volumen y de tiempo.

El proceso contrario, cuando un electrón es atrapado por un enlace insatisfecho, o en el modelo de bandas, cuando un electrón transita desde la banda de conducción a la de valencia con la consiguiente aniquilación de un par electrón-hueco se caracteriza por la velocidad de recombinación térmica, R_{th} , definida como el número de pares electrón-hueco que se recombinan por unidad de volumen y de tiempo. En general la velocidad de recombinación será proporcional al número de electrones disponibles en la banda de conducción y al de huecos en la de valencia, por tanto se puede escribir,

$$R = \alpha p n \tag{5.2}$$

donde α es una constante de proporcionalidad independiente del estado de equilibrio en que

se produce la recombinación. En equilibrio, para un semiconductor tipo n, $R_{th} = \alpha p_{n0} n_{n0}$. Es claro que en equilibrio los portadores están transitando continuamente entre las bandas, pero debe ocurrir que las concentraciones de portadores permanezcan constantes además de verificarse la ley de acción de masas, luego,

$$G_{th} = R_{th} = \alpha p_{n0} n_{n0} = \alpha n_i^2$$
 {5.3}

Cuando existe inicialmente un exceso de portadores (tanto positivo: inyección, como negativo: extracción) la situación es de desequilibrio. En un semiconductor de banda directa la probabilidad de que electrones y huecos se recombinen es grande. Esto es debido a que, como en el diagrama de bandas en el espacio de momentos coinciden, sobre el mismo valor del momento k, el mínimo de las bandas de conducción y el máximo de las de valencia, las transiciones se producen sin intercambio de momento. El valor de la velocidad de recombinación directa será el expresado en la ecuación $\{5.2\}$ con las concentraciones de electrones y huecos dadas por sus valores de no equilibrio (ecuaciones $\{5.1\}$).

Si se excita el semiconductor tipo n (mediante iluminación, por ejemplo) produciendo la generación de pares electrón-hueco con velocidad G_L , la concentración de portadores será superior a la de equilibrio. La velocidad de recombinación y la velocidad total de generación serán

$$R = \alpha p_n n_n = \alpha (n_{n0} + \Delta n) (p_{n0} + \Delta n);$$

$$G = G_L + G_{th}$$
(5.4)

donde *R* incluye tanto la componente de recombinación térmica como la que pueda presentarse como consecuencia de la tendencia al retorno al equilibrio por causas no térmicas. La variación con el tiempo de los portadores será el balance entre la generación y la recombinación. En particular para los minoritarios se puede escribir

$$\frac{dp_n}{dt} = G - R = G_L + G_{th} - R$$

En estado estacionario la derivada se anula y

$$G_L = R - G_{th} \Delta U \tag{5.5}$$

es decir, el mecanismo de generación forzada por la iluminación exterior es igual, en estado estacionario, a la "recombinación neta, U" que se define como la diferencia entre la velocidad de recombinación y la velocidad de generación térmica. Con las ecuaciones $\{5.3\}$ y $\{5.4\}$ se puede escribir la velocidad de recombinación neta como sigue

$$U = R - G_{th} = \alpha (n_{n0} + \Delta n) (p_{n0} + \Delta n) - \alpha n_{n0} p_{n0}$$

suponiendo inyección en bajo nivel $n_{n0} >> \Delta n$ y,

$$U \approx \alpha n_{n0} (p_{n0} + \Delta n) - \alpha n_{n0} p_{n0} = \alpha n_{n0} \Delta n = \frac{\Delta n}{1/\alpha n_{n0}}$$

Se define la magnitud tiempo de vida media de los minoritarios en exceso como

$$\tau_p = \frac{1}{\alpha n_{n0}}$$

con lo que la velocidad de recombinación neta se escribe finalmente

$$U = \frac{\Delta n}{\tau_p} = \frac{\Delta p}{\tau_p} = \frac{p_n - p_{n0}}{\tau_p}$$
 (5.6)

resultando proporcional a la concentración de portadores en exceso. Obviamente el caso U=0 se corresponde con la situación de equilibrio.

5.2.2. Recombinación indirecta.

En un semiconductor de banda indirecta las transiciones se producen con intercambio del valor del momento. Para realizar este intercambio las transiciones se realizan con la intervención de ciertos estados de energía intermedios llamados estados trampa que son niveles localizados en el seno de la banda prohibida de energía. La mayor eficiencia de los estados trampa se produce si su posición es próxima al centro de la banda prohibida. Por "mayor eficiencia" se quiere expresar que es máxima la probabilidad de que un electrón transite con su intervención. En el contexto de este tema los estados trampa se denominan centros de generación-recombinación (o más brevemente centros de recombinación).

En la transición de un electrón con la intervención de un centro de recombinación localizado en el nivel E_t pueden darse cuatro posibilidades reflejadas en la figura 5.2. En ella se presenta a la derecha la situación anterior a la transición y a la izquierda el resultado final. La figura se puede interpretar como una relación causa-efecto en el sentido siguiente: por actuación del mecanismo R_a (causa) se produce la captura de un electrón por el centro de recombinación (efecto). Los procesos a, b, c y d se denominan captura de electrón, emisión de electrón, captura de hueco y emisión de hueco, respectivamente.

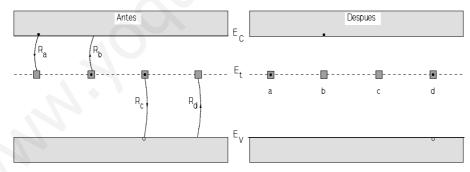


Fig. 5.2 Procesos significativos de la recombinación indirecta

Si N_t es la concentración de centros de recombinación y

$$f(E_t) = \frac{1}{1 + \exp(\frac{E_t - E_F}{kT})}$$

representa la probabilidad de que el nivel de energía correspondiente al centro de recombinación esté ocupado por un electrón; la concentración de centros de recombinación vacantes es $N_t(1-f(E_t))$ y la de centros de recombinación ocupados es $N_t(E_t)$. Con esto la velocidad de recombinación por captura de electrones será proporcional a la concentración de electrones disponibles en la banda de conducción (n), y a la concentración de centros de recombinación vacantes

$$R_{a} = v_{th} \, \sigma_{n} \, n \, N_{t} [1 - f(E_{t})] \tag{5.7}$$

donde v_{th} es la velocidad térmica y σ_n es la sección eficaz de captura de un electrón. Este último parámetro representa la efectividad de la captura de un electrón por el centro de recombinación. El producto $v_{th}\sigma_n$ opera como la constante de proporcionalidad α en la expresión {5.2}, y es el volumen barrido por un electrón de sección eficaz de captura σ_n ; si el centro de recombinación se encuentra en el interior de ese volumen en un instante dado se producirá la captura, en otro caso no se producirá.

Para el resto de las velocidades de emisión y captura

$$R_b = e_n N_t f(E_t); R_c = v_{th} \sigma_p p N_t f(E_t); R_d = e_p N_t [1 - f(E_t)].$$

donde los factores de proporcionalidad e_n y e_p se denominan probabilidad de emisión de un electrón y probabilidad de emisión de un hueco, respectivamente; σ_p es la sección eficaz de captura de un hueco.

En equilibrio térmico ocurrirá que $R_a=R_b$ y con esta condición en las ecuaciones anteriores

$$e_n = v_{th} \, \sigma_n \, n_i \, e^{\frac{E_t - E_i}{kT}}$$

donde se observa que si el centro de recombinación está próximo al fondo de la banda de conducción (E_r - E_i grande) la emisión de un electrón se hace más probable. Considerando ahora que en equilibrio también ocurre R_c = R_d

$$e_p = v_{th} \, \sigma_p \, n_i \, e^{\frac{E_i - E_i}{kT}} \tag{5.8}$$

la probabilidad de emisión del hueco aumenta exponencialmente a medida que el nivel intermedio de aproxima al nivel de valencia (E_v) .

En las expresiones de la $\{5.7\}$ a la $\{5.8\}$ los parámetros σ_{n} , σ_{p} , N_{t} y E_{t} son datos experimentales.

A partir de las anteriores expresiones se pueden desarrollar otras que den cuenta de la velocidad de recombinación neta en los procesos de recombinación indirecta. La expresión simplificada de esta velocidad es formalmente idéntica a la que corresponde a la recombinación directa (ecuación $\{5.6\}$). En ella el tiempo de vida medio de los minoritarios adopta una expresión de mayor complejidad. Considerar, por ejemplo, una situación de no equilibrio en la que un semiconductor extrínseco tipo n se ilumina uniformemente de manera que esta iluminación produce una velocidad de generación G_L . El llamado principio del

balance detallado establece que la variación neta de electrones por unidad de volumen y de tiempo en la banda de conducción será la diferencia entre los que llegan y los que la abandonan por unidad de volumen y de tiempo

$$\frac{dn_n}{dt} = G_L - (R_a - R_b)$$

para la banda de valencia se puede escribir

$$\frac{dp_n}{dt} = G_L - (R_c - R_d)$$

y en estado estacionario cuando son nulas las variaciones temporales

$$G_L = R_a - R_b = R_c - R_d$$

nótese que si este estado estacionario correspondiese al equilibrio, por ser $R_a = R_b$ y $R_c = R_d$, G_L tendría que ser necesariamente nulo.La velocidad de recombinación neta será, como en el caso de recombinación directa, $U = G_L$ (ecuación $\{5.5\}$), es decir $U = R_a - R_b$. Operando con las anteriores

$$U = \frac{v_{th} \sigma_n \sigma_p N_t (p_n n_n - n_i^2)}{\sigma_p \left[p_n + n_i \exp \frac{E_i - E_t}{kT} \right] + \sigma_n \left[n_n + n_i \exp \frac{E_t - E_i}{kT} \right]}$$
 (5.9)

Para hacer más simple esta expresión se supondrá que las secciones eficaces son iguales, $\sigma_n = \sigma_p = \sigma_0$, y que la inyección es en bajo nivel; con esto

$$U = \frac{p_{n} - p_{n0}}{\tau_{r}}; \quad \tau_{r} \triangleq \frac{1 + \frac{2n_{i}}{n_{n0} + p_{n0}} \cosh\left(\frac{E_{t} - E_{i}}{kT}\right)}{v_{th} \sigma_{0} N_{t}}$$
 (5.10)

donde se ha definido el parámetro tiempo de vida medio de recombinación indirecta, τ_r.

Si inicialmente la muestra no estuviese iluminada, sino que existe extracción de portadores $(pn < n_i^2)$ en lugar de inyección de portadores $(pn > n_i^2)$, el retorno al equilibrio hará que actúe el mecanismo de generación de portadores con cierta velocidad de generación, G; esta velocidad se puede evaluar a partir de que G=-U, asumiendo $\sigma_n = \sigma_p = \sigma_0$ en $\{5.9\}$

$$G = \frac{v_{th} \sigma_0 N_t (n_i^2 - p_n n_n)}{p_n + n_n + 2n_i \cosh\left(\frac{E_t - E_i}{kT}\right)}$$

si además es $p_n n_n << n_i^2$, entonces, al ser las concentraciones de portadores típicamente mayores que la unidad $(p_n + n_n)/n_i^2 << 2n_i \cosh[(E_i - E_i)/kT]$, la expresión anterior se reduce a donde se ha definido el parámetro tiempo de vida medio de generación, τ_g :

Las expresiones para las velocidades de recombinación y de generación son formalmente

$$G = \frac{v_{th} \sigma_0 N_t n_i}{2 \cosh\left(\frac{E_t - E_i}{kT}\right)} \Delta \frac{n_i}{\tau_g}$$

$$\tau_g = \frac{2 \cosh\left(\frac{E_t - E_i}{kT}\right)}{v_{th} \sigma_0 N_t}$$

$$(5.11)$$

análogas a la obtenida en el caso de la recombinación directa. Así, la velocidad de recombinación indirecta es directamente proporcional al exceso de portadores e inversamente proporcional a cierto parámetro con dimensiones de tiempos, τ_r , (ecuación $\{5.10\}$), y la velocidad de generación indirecta es directamente proporcional a la concentración intrínseca de portadores e inversamente proporcional a cierto parámetro con dimensiones de tiempos, τ_e , (ecuación $\{5.11\}$).

5.2.3. Recombinación superficial.

En las superficies se producen discontinuidades abruptas de la estructura cristalina. Debido a ello se introducen un gran número de niveles localizados de energía en el seno de la banda prohibida que operan como centros de recombinación.

El número total de portadores que se recombinan en una superficie por unidad de área y de tiempo tiene una expresión análoga al caso de la recombinación en volumen (ecuación {5.9})

$$U_{S} = \frac{v_{th} \sigma_{n} \sigma_{p} N_{St} (p_{S} n_{S} - n_{i}^{2})}{\sigma_{p} \left[p_{S} + n_{i} \exp \frac{E_{i} - E_{t}}{kT} \right] + \sigma_{n} \left[n_{S} + n_{i} \exp \frac{E_{t} - E_{i}}{kT} \right]}$$
(5.12}

 n_S y p_S denotan las concentraciones volumétricas de electrones y huecos en la superficie considerada y N_{St} es la densidad de centros de recombinación por unidad de área en la región superficial. Para condiciones de inyección en bajo nivel y asumiendo $n_S \approx n >> p_S$ junto con $E_t \approx E_t$, la expresión de la ecuación $\{5.12\}$ queda,

$$U_{S} \approx v_{th} \, \sigma_{p} \, N_{St} \, (p_{S} - p_{n0}) \, \Delta S_{lr} \, (p_{S} - p_{n0})$$

habiendo definido en la ecuación el parámetro S_{lr} llamado velocidad de recombinación superficial en baja inyección.

Si, tal y como se propuso en el apartado anterior, se supone que las secciones eficaces de captura de un electrón y de un hueco son iguales, las velocidades de recombinación y generación superficiales obtenidas de la expresión {5.12} quedan,

cuyas unidades, se puede comprobar, son las de una velocidad. Las anteriores expresiones juegan un papel análogo al de la inversa de los tiempos de vida medios, siendo válidas para altos niveles de inyección.

$$S_r = \frac{v_{th}\sigma_S N_{St}}{1 + \frac{2n_i}{n_{n0} + p_S} \cosh\left(\frac{E_t - E_i}{kT}\right)}$$
$$S_g = \frac{v_{th}\sigma_S N_{St}}{2\cosh\left(\frac{E_t - E_i}{kT}\right)}$$

6 LA ECUACIÓN DE CONTINUIDAD

Los portadores de carga en los materiales semiconductores son electrones y huecos libres. Rigurosamente hablando no están libres ya que se hallan bajo la influencia del potencial periódico de la red cristalina y sujetos a posibles colisiones con otros agentes (átomos de la red cristalina, impurezas, otros electrones y huecos). Sin embargo, por un lado se tiene que los efectos de este potencial en el movimiento de las partículas se ha introducido en la masa efectiva, por otro lado, los efectos de las colisiones se pueden aislar del movimiento en los intervalos de no colisión (desde este punto de vista consideraremos que las colisiones operan como si fuesen fuerzas impulsivas), resultando que las partículas se mueven con gran libertad en los intervalos de no colisión. Por ello se dirá en lo sucesivo que tanto electrones como huecos son partículas libres.

En este tema se dará una descripción de las causas que ponen en movimiento a estas partículas libres. Ambas, electrones y huecos, son partículas cargadas, por tanto sufren las acciones de los campos electromagnéticos y éstos son capaces de incrementar su energía. Además, asociado al movimiento errático de multitud de éstas partículas aparece otro agente causante del movimiento: la difusión.

6.1. Arrastre de portadores.

El arrastre de portadores está asociado a la presencia de campos eléctricos, se puede caracterizar mediante un parámetro llamado movilidad.

6.1.1 Movilidad

Sea un semiconductor tipo n con dopaje uniforme (N_D=constante) y en equilibrio térmico. Los electrones de conducción en la banda de conducción son como partículas libres (la

influencia de la red cristalina se incorpora en la masa efectiva).

Su energía cinética se puede calcular por,

$$\frac{1}{2}m_{n}v_{no}^{2} = \frac{3}{2}kT; \quad (v_{no} \approx 10^{7} cm \, s^{-1})$$

donde v_{no} es la velocidad en equilibrio térmico.

La trayectoria del electrón puede imaginarse como una sucesión de segmentos rectilíneos quebrados por choques con átomos de la red, átomos de impureza y otros agentes (figura 6.1.a). El movimiento resultante es aleatorio y en promedio nulo.

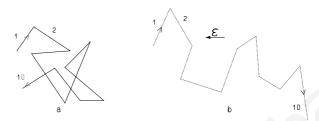


Fig. 6.1. Movimiento de un electrón a) en ausencia de excitación externa y b) bajo la acción de un campo eléctrico

Se define *camino libre medio* como la distancia promedio recorrida por el electrón entre colisiones (valores del orden de 10^{-5} cm), y *tiempo libre medio* (τ_c) como el tiempo promedio transcurrido entre colisiones (1 ps).

Si se somete la muestra a un campo eléctrico poco intenso los electrones serán acelerados en la dirección del campo. En este caso se superponen el movimiento térmico y el debido al campo, el movimiento resultante es un desplazamiento neto en la dirección del campo eléctrico (figura 6.1.b). La velocidad asociada al campo (*velocidad de arrastre*) se considera en promedio uniforme por la acción de las colisiones. Se calcula mediante las siguientes relaciones,

$$F = -q\varepsilon$$

$$F = m_n a = m_n \frac{v_n}{\tau_c} \Longrightarrow v_n = -\frac{q\tau_c}{m_n} \varepsilon$$

$$(6.2)$$

el valor absoluto del factor de proporcionalidad entre el campo y la velocidad de los electrones se denomina *movilidad de electrones*,

$$\mu_n = \frac{q\tau_c}{m_n} \implies v_n = -\mu_n \varepsilon$$

Análogamente para los portadores en la banda de valencia (huecos), se define la *movilidad* de huecos como,

$$\mathbf{v}_{p} = \mathbf{\mu}_{p} \mathbf{\varepsilon}$$

las movilidades se miden en cm²V⁻¹s⁻¹ y son parámetros que indican la manera en que los

campos eléctricos externos afectan al movimiento de los portadores.

La movilidad es directamente proporcional al tiempo libre medio (τ_c) que a su vez depende de los mecanismos que gobiernan las colisiones (interacciones) de los portadores, estos mecanismos se denominan *mecanismos de "scattering" (dispersión)*.

Los mecanismos fundamentales en el proceso de dispersión son:

- 1. dispersión por la red, y
- 2. dispersión asociada a las impurezas ionizadas.

La dispersión por la red consiste en el intercambio de energía que se produce debido a la desviación que sufre la periodicidad del potencial de la red por causa de los movimientos térmicos al aumentar la temperatura. Este mecanismo, obviamente aumenta con la temperatura y es el dominante a temperaturas altas.

La dispersión asociada a las impurezas ionizadas se debe a interacciones de tipo coulombiano entre los iones y los portadores de carga. Es mayor cuanto mayor sea la concentración de impurezas, por tanto, la movilidad disminuye, en general, con la concentración de impurezas.

Finalmente, la movilidad combinada de ambos mecanismos de evalúa por

$$\frac{1}{\tau_c} = \frac{1}{\tau_{c,red}} + \frac{1}{\tau_{c,imp}} \implies \frac{1}{\mu} = \frac{1}{\mu_L} + \frac{1}{\mu_I}$$

6.1.2. Resistividad

La fuerza a la que están sometidos los electrones del diagrama de la figura 6.2 en presencia de un campo eléctrico se calcula por,

$$\mathbf{F} = -q\mathbf{\varepsilon} = -\nabla_{\mathbf{r}} E_{pot} = -\nabla_{\mathbf{r}} E_{C}(\mathbf{r}) = -\nabla_{\mathbf{r}} E_{i}(\mathbf{r}) \implies \mathbf{\varepsilon} = \frac{1}{q} \nabla_{\mathbf{r}} E_{i}$$
 (6.1)

donde se muestra la relación entre el campo y la curvatura de las bandas.

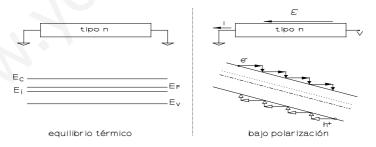


Fig. 6.2 Influencia de un campo eléctrico sobre las bandas

Se define cierto potencial electrostático (ψ) como aquella función cuyo gradiente cambiado de signo da el campo eléctrico externo, con las dos últimas ecuaciones,

$$\varepsilon = -\nabla_r \psi$$

$$\Psi = -\frac{E_i}{q}$$

esta ecuación relaciona la energía potencial del electrón con el potencial electrostático asociado al campo externo.

Los electrones en la banda de conducción se moverán hacia la derecha. La separación del fondo de la banda de conducción indica una ganancia de energía cinética (que se pierde toda o en parte tras una colisión). El transporte de portadores bajo la acción de un campo externo aplicado implica la aparición de una corriente llamada de *arrastre*.

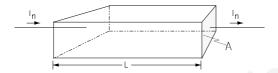


Fig. 6.3 Corriente de arrastre en un semiconductor

Sea una muestra de material semiconductor tipo n con una concentración de electrones de valor n cm⁻³ (figura 6.3). Al aplicar un campo eléctrico externo se producirá conducción por arrastre de portadores. La densidad de corriente asociada será la suma de los productos de las cargas de los electrones por su velocidad,

$$\boldsymbol{J}_{n} = \frac{I_{n}}{A} = \sum_{i=0}^{n} \left(-q\boldsymbol{v}_{i} \right) = -qn\boldsymbol{v}_{n} = qn\boldsymbol{\mu}_{n}\boldsymbol{\varepsilon}$$
 (6.2)

 I_n es la corriente de electrones. Análogamente,

$$\boldsymbol{J}_{p} = q p \boldsymbol{\nu}_{p} = q p \boldsymbol{\mu}_{p} \boldsymbol{\varepsilon} \tag{6.3}$$

La densidad de corriente total debida al campo externo (corriente de arrastre) es,

$$\boldsymbol{J} = \boldsymbol{J}_n + \boldsymbol{J}_p = q(n\mu_n + p\mu_p)\boldsymbol{\varepsilon}$$

de donde se define la conductividad de la muestra como,

$$\sigma = q(n\mu_n + p\mu_p)$$

y su resistividad por,

$$\rho \equiv \frac{1}{\sigma} = \frac{1}{q(n\mu_n + p\mu_p)}$$

Particularizando para los semiconductores extrínsecos

$$\rho_n = \frac{1}{qn\mu_n}; \ \rho_p = \frac{1}{qp\mu_p}$$

6.1.3. El efecto Hall

Considérese la muestra semiconductor tipo p y un campo magnético aplicado según el eje OZ (B_z) que se muestra en la figura 6.4.

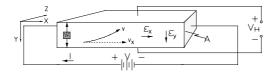


Fig. 6.4 Dispositivo para la medida del efecto Hall

La fuerza de Lorentz que experimenta un hueco asociada a B_z será,

$$F = qv_x B_x(-j)$$

esta fuerza resulta en una acumulación de huecos en la parte superior de la muestra lo que implica la aparición del campo vertical ε_v .

Por la condición de corriente nula en la dirección OY,

$$F = qv_x B_z(-\mathbf{j}) + q\varepsilon_y(+\mathbf{j}) = \mathbf{0} \implies \varepsilon_y = v_x B_z$$

la aparición de este campo eléctrico en la dirección OY se denomina efecto Hall, y al campo ε_y campo de Hall, la tensión asociada al mismo $(V_H = \varepsilon_y W)$ es la llamada tensión de Hall. Utilizando la expresión que da la velocidad en función de la densidad de corriente de huecos $(J_p = qpv_p)$,

$$\varepsilon_{y} = \left(\frac{J_{p}}{qp}\right) B_{z} = R_{H} J_{p} B_{z}$$

donde $R_H = \frac{1}{qp}$ se denomina coeficiente de Hall.

Para un semiconductor tipo n el coeficiente Hall resulta negativo y de valor,

$$R_H = -\frac{1}{qn}$$

El efecto Hall evidencia la existencia de huecos como una partícula de carga positiva que se halla en el seno de un material semiconductor. La medida de la tensión de Hall permite el cálculo de la concentración de portadores en un semiconductor que en general es distinta a la de impurezas así como del tipo de portador,

$$p = \frac{1}{qR_H} = \frac{J_p B_z}{q\varepsilon_y} = \frac{(I/A)B_z}{q(V_H/W)} = \frac{IB_z W}{qV_H A}$$

6.2. Difusión de portadores

La difusión es la tendencia de las partículas materiales a moverse desde las regiones de mayor concentración hacia las de menor concentración. En el caso de los semiconductores se da si existe una variación espacial de la concentración de portadores, este desplazamiento neto de cargas es el responsable de la llamada *corriente de difusión*.

6.2.1. Procesos de difusión

Considerar un material semiconductor a temperatura uniforme y no homogéneo, esto es, la densidad de portadores es variable en el espacio.

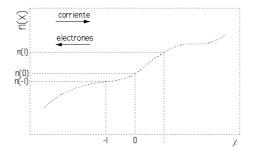


Fig. 6.5 Mecanismo de difusión de portadores

La velocidad de los electrones es la velocidad térmica, v_{th} , y su movimiento es aleatorio. Sea l el camino libre medio ($l = v_{th}\tau_c$). La probabilidad de que un electrón se mueva hacia la izquierda en x=-l es la misma que lo haga hacia la derecha. De la misma manera, en un tiempo τ_c la mitad de ellos habrá atravesado el plano x=0. Así, el flujo promedio de electrones que atraviesen el plano x=0 desde la izquierda será,

$$f_{i\to d} = \frac{1}{2} \frac{n(-l)l}{\tau_c} = \frac{1}{2} n(-l) v_{th}$$

análogamente, que lo hagan desde la derecha

$$f_{d\to i} = = \frac{1}{2}n(l)v_{th}$$

y el flujo neto queda,

$$f = f_{i \to d} - f_{d \to i} = \frac{1}{2} v_{th} (n(-l) - n(l))$$

Desarrollando las densidades en serie de Taylor en un entorno de los puntos l y -l queda,

$$f = \frac{1}{2}v_{th} \left\{ \left[n(0) - l\frac{dn}{dx} \right] - \left[n(0) + l\frac{dn}{dx} \right] \right\} = -v_{th} l\frac{dn}{dx} \equiv -D_n \frac{dn}{dx}$$

donde D_n es la llamada constante de difusión.

La densidad de corriente de difusión está dada por,

$$J_n = -qf = (-q)\left(-D_n \frac{dn}{dx}\right)$$

en tres dimensiones,

$$\boldsymbol{J}_{n} = qD_{n}\nabla_{\boldsymbol{r}}n(\boldsymbol{r}) \tag{6.4}$$

En el caso de los huecos se obtiene,

$$\boldsymbol{J}_{p} = -qD_{p}\nabla_{\boldsymbol{r}}p(\boldsymbol{r}) \tag{6.5}$$

6.2.2. La relación de Einstein

La relación de Einstein es una consecuencia del equilibrio que implica una interdependencia entre los mecanismos de arrastre y difusión. Ambos mecanismos deben ser considerados como aspectos complementarios de un mismo fenómeno cuya resultante es el flujo neto de partículas cargadas que origina una corriente eléctrica.

Se obtiene de la condición de flujo neto nulo en condiciones de equilibrio,

$$J_n = q\mu_n n \varepsilon + qD_n \nabla n = 0 \implies \varepsilon = -\frac{D_n}{\mu_n} \left(\frac{\nabla n}{n}\right)$$

con la conocida ecuación $n = n_i \exp \frac{E_F - E_i(\mathbf{r})}{kT} \Rightarrow \frac{\nabla n}{n} = -\frac{\nabla E_i(\mathbf{r})}{kT}$, queda,

$$\varepsilon = \frac{D_n}{\mu_n} \frac{1}{kT} \nabla E_i \tag{6.8}$$

procediendo de forma análoga con los huecos.

$$\mathbf{\varepsilon} = \frac{D_p}{\mu_p} \frac{1}{kT} \nabla E_i \tag{6.9}$$

y recordando la ecuación {6.1} e igualando,

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_n} = \frac{kT}{q}$$

que representa la relación de Einstein.

6.2.3. Ecuaciones para la densidad de corriente

Cuando un semiconductor no homogéneo está sometido a la acción de un campo eléctrico, ambos mecanismos de conducción se presentan. La densidad de corriente total de electrones, J_n , y la densidad de corriente total de huecos, J_p , es la suma de las componentes de arrastre (ecuaciones $\{6.2\}$ y $\{6.3\}$) y las de difusión (ecuaciones $\{6.4\}$ y $\{6.5\}$), respectivamente

$$\boldsymbol{J}_n = q\boldsymbol{\mu}_n \, n\boldsymbol{\varepsilon} + q D_n \nabla n \; ; \quad \boldsymbol{J}_p = q\boldsymbol{\mu}_p \, p\boldsymbol{\varepsilon} - q D_p \nabla p$$

Esta densidad de corriente total es la suma de las correspondiente a electrones y huecos,

$$\boldsymbol{J}_T = \boldsymbol{J}_n + \boldsymbol{J}_p$$

Estas últimas relaciones permiten el cálculo de la corriente en el seno del material semiconductor si son conocidas las concentraciones de portadores y el campo eléctrico.

6.3. Efectos de los campos elevados.

Se ha visto que si los campos eléctricos son poco intensos se verifica la relación $\{6.2\}$, es decir, la velocidad de arrastre varía linealmente con el campo. Con esto, en todo el desarrollo anterior se ha supuesto que el tiempo entre colisiones es independiente de la excitación externa. Esta hipótesis es válida si la velocidad de arrastre es despreciable frente a la térmica, $v_a << v_{th}$. A medida que la velocidad de arrastre se hace comparable con la térmica la relación que liga al campo eléctrico pierde la linealidad referida. La figura 6.6 muestra las curvas velocidad-campo de los electrones para el silicio y el arseniuro de galio. Se observa que, en ambos materiales, si el campo crece lo suficiente la velocidad de arrastre alcanza un valor de saturación. El arseniuro de galio presenta un máximo absoluto para valores relativamente pequeños del campo. En ambos materiales las curvas correspondientes a los huecos tienen una forma análoga a la de los electrones en silicio.

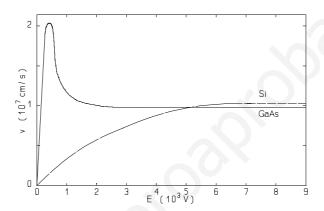


Fig. 6.6. Velocidad de arrastre de electrones frente al campo eléctrico para el Si y el GaAs

Así, todas las deducciones realizadas hasta el momento no son válidas si los campos superan cierto valor crítico que deberá fijarse experimentalmente. Por esto se ha venido asumiendo que los campos son bajos en los análisis hasta ahora presentados.

Otro aspecto a considerar cuando los campos son elevados es el proceso de avalancha, consistente en la generación de pares electrón-hueco provocada por colisiones de electrones energéticos excitados por un campo eléctrico. El proceso se refleja en la figura 6.7. En ella, el electrón a se acelera por causa del campo (mostrado en la figura) y gana energía cinética alejándose del nivel de conducción. Si la ganancia es suficiente, colisiona con la red rompiendo un enlace con la consiguiente generación de un par electrón hueco (b)y disminución de la energía cinética del electrón causante del impacto. Tras el proceso b en el material están presentes dos electrones de conducción $(c \ y \ d)$, y un hueco (e). Los electrones $c \ y \ d$ podrán iniciar de nuevo la avalancha, así como el hueco que también ganará energía cinética del campo provocando el proceso f que genera un nuevo hueco y un electrón (g). El

proceso se repite en cadena y el número de portadores generados puede ser muy importante. Al romper enlaces en los átomos de la red este proceso de avalancha causa la ionización de los átomos, por ello también se la llama ionización por impacto.

Para caracterizar la ionización por impacto se define el parámetro llamado razón de ionización del electrón, α_n (para los huecos α_p), como el número de pares electrón-hueco generados por un electrón en la unidad de distancia recorrida y la unidad de tiempo. Esta cantidad puede ser medida experimentalmente. Con todo, la velocidad de generación de pares electrón-hueco por avalancha, G_A , está dada por,

$$G_{A} = \frac{1}{q} \left(\alpha_{n} | J_{n} | \alpha_{p} | J_{p} | \right)$$

donde J_n y J_p son las densidades de corriente de electrones y huecos.

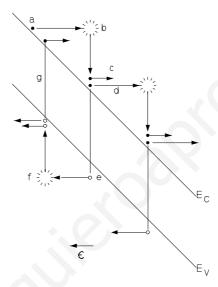


Fig. 6.7. Proceso de avalancha

6.4. La ecuación de continuidad.

Hasta ahora se ha puesto de manifiesto efectos tales como el arrastre de portadores por la acción de un campo eléctrico, la difusión asociada a un gradiente en la concentración de portadores y la generación-recombinación.

Se considera ahora el efecto conjunto de todos los anteriores, el cual está gobernado por la llamada ecuación de continuidad que expresa la conservación de la carga eléctrica. En su deducción se hace un balance de carga (o de partículas) en un volumen infinitesimal. En los dos puntos que siguen se desarrolla el caso unidimensional y se extienden los resultados al

caso general de tres dimensiones.

6.4.1. Caso unidimensional.

Considerar una sección de semiconductor y cierto volumen infinitesimal Adx (figura 6.8). El número de electrones por unidad de volumen en el elemento de volumen considerado variará a lo largo del tiempo por causa de varios mecanismos: el aumento sólo puede deberse, en primer lugar, a cierto flujo de corriente de electrones entrante y, en segundo lugar, a generación neta en el volumen; la disminución, por contra, puede asociarse a cierto flujo de corriente de electrones saliente y/o a recombinación neta en el volumen.

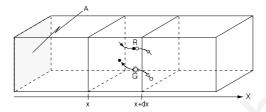


Fig. 6.8 Volumen infinitesimal de semiconductor

Con todo puede escribirse,

$$\frac{\partial n}{\partial t}A dx = \frac{J_n(x)}{-q}A - \frac{J_n(x+dx)}{-q}A + GA dx - RA dx$$

Desarrollando en serie de Taylor la densidad de corriente en un entorno de x+dx,

$$J_n(x+dx) = J_n(x) + \frac{\partial J_n}{\partial x} dx + \cdots$$

con este resultado en la ecuación anterior y teniendo en cuenta que $G=G_e+G_{th}$, donde G_e representa la velocidad de generación asociada a una causa exterior

$$\frac{\partial n}{\partial t} = \frac{1}{q} \frac{\partial J_n(x)}{\partial x} + G_e - U$$
 (6.6)

que es la ecuación de continuidad para los electrones.

Procediendo análogamente con los huecos se llega a la ecuación de continuidad para los huecos.

$$\frac{\partial p}{\partial t} = -\frac{1}{a} \frac{\partial J_p(x)}{\partial x} + G_e - U$$
 (6.7)

En bajo nivel de inyección se dispone de la relación que liga a la velocidad de recombinación neta U con la concentración de portadores minoritarios. Por lo tanto, dadas las expresiones de las corrientes, es posible escribir la ecuación de continuidad particularizada para un semiconductor tipo n en bajo nivel de inyección

y resuelta esta ecuación en los minoritarios, con las condiciones de contorno apropiadas, se

$$\frac{\partial p_n}{\partial t} = -p_n \mu_p \frac{\partial \varepsilon}{\partial x} + \mu_p \varepsilon \frac{\partial p_n}{\partial x} + D_p \frac{\partial^2 p_n}{\partial x^2} + G_e - \frac{p_n - p_{n0}}{\tau_n}$$

puede calcular la concentración y corriente de mayoritarios. Para un semiconductor tipo p la ecuación de continuidad en baja inyección es la de electrones,

$$\frac{\partial n_p}{\partial t} = n_p \mu_n \frac{\partial \varepsilon}{\partial x} + \mu_n \varepsilon \frac{\partial n_p}{\partial x} + D_n \frac{\partial^2 p_n}{\partial x^2} + G_e - \frac{n_p - n_{p0}}{\tau_n}$$

Junto a las ecuaciones de continuidad deberá satisfacerse la de Poisson,

$$\frac{d\varepsilon}{dx} = \frac{\rho_s}{\varepsilon_s}$$
 (6.8)

en la que ε_s es la permitividad del semiconductor y ρ_s representa la densidad de carga cuya expresión puede tomarse como

$$\rho_s = q(p - n + N_D^+ - N_A^-)$$

6.4.2. Caso tridimensional.

Expresadas en tres dimensiones, las ecuaciones {6.6}, {6.7} y {6.8} adoptan la forma,

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \boldsymbol{J}_n + \boldsymbol{G}_e - \boldsymbol{U}$$
$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \boldsymbol{J}_p + \boldsymbol{G}_e - \boldsymbol{U}$$
$$\nabla \varepsilon = \frac{\rho_s}{\varepsilon}$$

con las que se resuelven los problemas en tres dimensiones si se dispone de las condiciones de contorno apropiadas.

6.5.-Inyección lateral en estado estacionario.

Como primera aplicación de las ecuaciones de continuidad se considera el caso de un semiconductor en el que se fuerza una inyección de portadores desde una de sus caras.

Fig. 6.9 Inyección lateral en estado estacionario

Sea un semiconductor tipo n en el que en régimen estacionario se mantiene un exceso de portadores en una de sus caras (mediante iluminación, por ejemplo). Se producirá un gradiente en la concentración de portadores minoritarios en las proximidades de la superficie. La ecuación de continuidad correspondiente será,

$$\frac{\partial p_n}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} + G_e - U = 0$$

por su parte, la densidad de corriente de estos huecos será sólo de difusión,

$$J_p = -qD_p \frac{dp_n}{dx}$$

además la velocidad de generación en el volumen del semiconductor es nula ya que sólo se ilumina una de sus caras (la luz no penetra): $G_e=G_L=0$. Por otro lado en régimen de baja inyección $U=(p_n-p_{n0})/\tau p$. La ecuación a resolver es,

$$\frac{\partial^2 p_n}{\partial x^2} - \frac{p_n - p_{n0}}{D_n \tau_n} = 0$$

Las condiciones de contorno son,

$$p_n(x=0) = p_n(0) = \text{constante}; \quad p_n(x \to \infty) = p_{n0}$$

y con éstas, la solución de la ecuación diferencial es,

$$p_n(x) = p_{n0} + [p_n(0) - p_{n0}]e^{-x/L_p}$$
; $L_p = \sqrt{D_p \tau_p}$

donde se ha definido el parámetro L_p , llamado longitud de difusión, que representa la distancia a la que el exceso de huecos se reduce en un factor e^{-l} respecto a su valor en el plano de inyección. L_p es la distancia promedio que recorre el electrón antes de recombinarse.

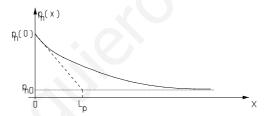


Fig. 6.10 Distribución de minoritarios

Si la muestra de material semiconductor no se extiende hasta el infinito, sino que su longitud es finita de valor W, asumiendo que todos los portadores en exceso se extraen en la cara opuesta, es decir en x=W, las condiciones de contorno quedan,

$$p_n(x=0) = p_n(0) = \text{constante}; \quad p_n(x=W) = p_{n0}$$

la nueva solución de la ecuación diferencial resulta ser,

$$senh \frac{W - x}{L_{p}}$$

$$p_{n}(x) = p_{n0} + [p_{n}(0) - p_{n0}] \frac{L_{p}}{senh \frac{W}{L_{p}}}$$
(6.9)

si resulta que $L_p>>W$ la recombinación es despreciable pues los portadores no disponen de

espacio suficiente como para recombinarse (nótese el significado de la longitud de difusión), en ese caso la solución puede simplificarse mediante un desarrollo en serie de Taylor truncado en las potencias de orden superior al primero: la distribución de portadores minoritarios resulta lineal.

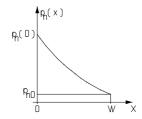


Fig. 6.11 Distribución de huecos

Finalmente, la densidad de corriente de huecos en el extremo de la muestra se calcula, en el caso general, a partir de la concentración de minoritarios dada en la ecuación {6.9}

$$J_{p}(W) = -qD_{p}\frac{\partial p_{n}}{\partial x}\big|_{W} = q[p_{n}(0) - p_{n0}]\frac{D_{p}}{L_{p}}\frac{1}{senh\frac{W}{L_{p}}}$$

6.6.-Portadores minoritarios en la superficie.

Si en un extremo de una muestra de material semiconductor tipo n bajo iluminación uniforme se crea cierta recombinación superficial, la densidad de corriente de huecos hacia la superficie desde el volumen está dada por qU_s , donde la recombinación superficial se expresa, aproximadamente, $U_s \approx v_{th} \sigma_p N_{st}(p_s - p_{n0})$. Esta recombinación hace disminuir la concentración de portadores en la superficie, y por tanto, aparece un gradiente de huecos con lo que existe corriente de difusión que es igual a la corriente por recombinación superficial.

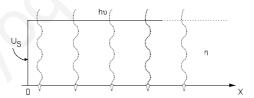


Fig. 6.12 Recombinación superficial

Para resolver esta situación se ha de hallar una solución a la ecuación de continuidad en estado estacionario correspondiente,

$$D_p \frac{\partial^2 p_n}{\partial x^2} + G_L - \frac{p_n - p_{n0}}{\tau_p} = 0$$

donde la componente de la densidad de corriente de arrastre es nula. Se asume inyección en bajo nivel y que la radiación luminosa introduce una velocidad de generación conocida G_L .

La condición de contorno en x=0 se deduce de,

$$J_T = J_{pD} + J_S = 0 \implies qD_p \frac{dp_n}{dx}|_{x=0} = qU_S = qv_{th}\sigma_p N_{St}(p_S - p_{n0})$$

y la correspondiente al extremo opuesto, como el estado es estacionario,

$$G_L = U = \frac{p_n - p_{n0}}{\tau_n} \implies p_n(x \rightarrow \infty) = p_{n0} + \tau_p G_L$$

La solución de la ecuación {6.10} con las condiciones de contorno mencionadas es,

$$p_{n}(x) = p_{n0} + \tau_{p}G_{L}\left(1 - \frac{\tau_{p}S_{lr} \text{ e}^{-\text{x}/\text{L}_{p}}}{L_{p} + \tau_{p}S_{lr}}\right); \quad S_{lr} = v_{th}\sigma_{p}N_{St}$$
 si la velocidad de recombinación superficial en baja inyección es muy grande la

concentración de minoritarios se aproxima a

$$p_n(x) \rightarrow p_{n0} + \tau_p G_L \left(1 - e^{-x/L_p}\right)$$

que se muestra en la figura 6.13.

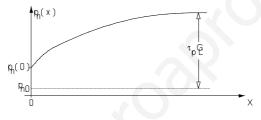


Fig. 6.13.

6.7.-El experimento de Haynes-Schokley.

Con este experimento se constata de manera experimental el arrastre y la difusión de portadores minoritarios. El experimento permite la medida de la movilidad y el coeficiente de difusión de los portadores minoritarios de manera independiente.

Consiste en someter un semiconductor (tipo n en la figura 6.14) a un campo eléctrico uniforme. En cierto punto, x=0, se dispara un haz luminoso que produce un exceso de portadores. Suponiendo que la invección de portadores es en bajo nivel, este exceso será despreciable al considerar los portadores mayoritarios. El exceso de huecos, sin embargo, sufrirá cierto arrastre en la dirección del campo alcanzando, tras cierto intervalo de tiempo, t_d , posterior al pulso de luz, el punto x=L que es el plano de observación de la muestra.

Por lo tanto,

$$v_d = \frac{L}{t_d} \implies \mu_p = \frac{v_d}{\varepsilon}$$

la movilidad de los huecos puede calcularse a partir de la medida experimental del tiempo de arrastre t_d . El exceso de portadores se difunde además por la existencia de un gradiente en la concentración de huecos.

La ecuación de continuidad en instantes posteriores al pulso de luz se expresa por

$$\frac{\partial p_n}{\partial t} = -\mu_p \varepsilon \frac{\partial p_n}{\partial x} + D_p \frac{\partial^2 p_n}{\partial x^2} - \frac{p_n - p_{n0}}{\tau_p}$$

cuya solución es

$$p_n(x,t) = p_{n0} + \frac{N}{\sqrt{4\pi D_p t}} e^{-\frac{(x-\mu_p \varepsilon t)^2}{4D_p t} - \frac{t}{\tau_p}}$$

siendo N el número de huecos generados por unidad de área en t=0.

Estas relaciones junto con las medidas experimentales permiten determinar los parámetros referidos al inicio del punto.

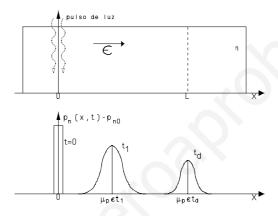
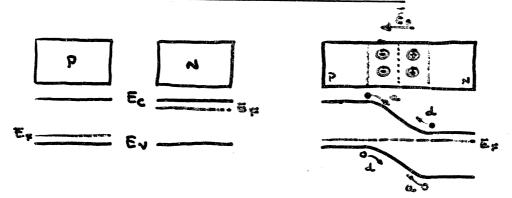


Fig. 6.14 Experimento de Haynes-Shokley

8.1.1.- LA UNIÓN PN EN EQUILIBRIO.



. AL "UNIRLOS" - CORRIENTES DE DIFUSION

CREACIÓN DE E.C.E. -- APARICIÓN DE E.

CORRIENTES DE ARRASTE

EQUILIBRIO 40 CORRIGNTES TOTALES DE BLECTRONES Y HUBLOS = O

○
$$J_p = J_{pa} + J_{pd} = 0$$
 =0
⇒ $J_p = q \, V_p \, p \, \mathcal{E} - q \, D_p \, \frac{dP}{dx} = 0$; $\mathcal{E} = \frac{1}{q} \, \frac{d\mathcal{E}_i}{dx}$; $D_p = \frac{KT}{q} \, V_p \Rightarrow 0$
⇒ $J_p = V_p \, P \, \frac{d\mathcal{E}_i}{dx} - KT \, V_p \, \frac{dP}{dx} = 0$;

$$\frac{dP}{dx} = ? \Rightarrow P = M_i \, e^{\frac{\mathcal{E}_i - \mathcal{E}_f}{RT}} \Rightarrow \frac{dP}{dx} = \frac{1}{RT} \left(\frac{d\mathcal{E}_i}{dx} - \frac{d\mathcal{E}_f}{dx} \right) P$$

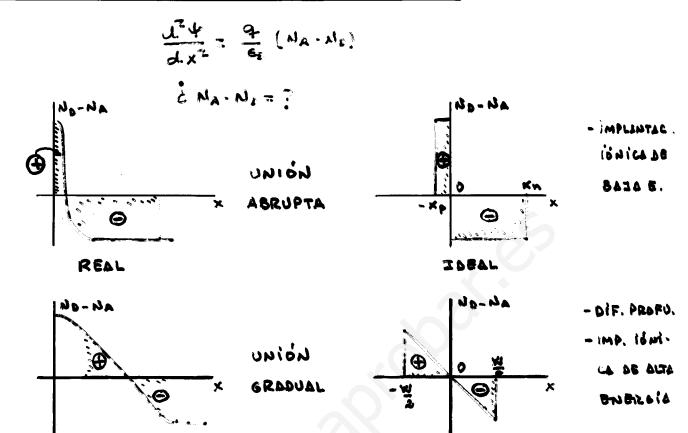
LUEGO: $J_p = V_p \, P \, \frac{d\mathcal{E}_f}{dx} = 0 \Rightarrow \frac{d\mathcal{E}_f}{dx} = 0$

• $J_m = J_{ma} + J_{md} = 0 \Rightarrow 0$

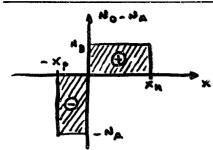
$$\frac{d\mathcal{E}_f}{dx} = 0$$

EQUILIBRIO AN NIVEL DE FERMI CONSTANTE

8.1.2 - ANALISIS DE LA BONA DE CARGA ESPACIAL.



8.1.2.1. UNION A GRUPTA, EN EQUILIBRIO



· ECUACIÓN DE POISSON:

$$\frac{d^2 \psi}{dx^2} = -\frac{q}{6s} \left(N_0 - N_A \right)$$

$$\cdot N_0 - N_A = \begin{cases} -N_A, & -\kappa_p \le \kappa < 0 \\ N_D, & 0 < \kappa \le \kappa_B \end{cases}$$

. POR NEUTRALIDAD DE CARGA EN EL SEMICONDUCTOR :

ANCHURA DE LA BODA DE CARGA ESPACIAL :

CAMPO ELÉCTRICO :

-
$$\times \rho \in \times CO$$
, $\frac{d^2 \psi}{dx^2} = \frac{q N_A}{\epsilon_S} \Rightarrow \mathcal{E}(x) = -\frac{d \psi}{dx} = -\int \frac{q N_A}{\epsilon_S} dx = -\frac{q N_A}{\epsilon_S} (x + \kappa_p)$
 $0 < x \in \times m$, $\frac{d^2 \psi}{dx^2} = -\frac{q N_D}{\epsilon_S} \Rightarrow \mathcal{E}(x) = \frac{q N_D}{\epsilon_S} (x - \kappa_m)$
 $\Rightarrow CAMPO MAXIMO:$
 $\Rightarrow CAMPO MAXIMO:$
 $\Rightarrow CAMPO MAXIMO:$

$$\mathcal{E}(x=0) = -\frac{q N_A}{\epsilon_S} \times \rho = -\frac{q N_D}{\epsilon_S} \times n$$

$$\mathcal{E}_m = -\mathcal{E}(x=0) = \frac{q N_A}{\epsilon_S} \times \rho = \frac{q N_D}{\epsilon_S} \times n$$

$$ARSAWA$$

. POTENCIAL DE CONTACTO, VbL :

$$V_{bi} = -\int_{-x_p}^{x_m} E(x) dx = \frac{4}{2\epsilon_s} \left(N_A x_p^2 + N_b x_m^2 \right) = \frac{4}{2} \epsilon_m w$$

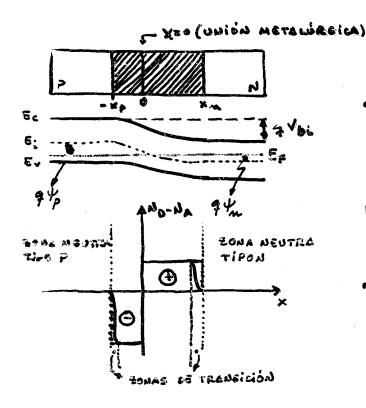
•
$$W = X_{M} + X_{P} = \frac{\epsilon_{S} \, \epsilon_{M}}{9 \, N_{D}} + \frac{\epsilon_{S} \, \epsilon_{M}}{9 \, N_{A}} = \frac{\epsilon_{S}}{9} \, \epsilon_{M} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} + N_{D}}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{A} \, i}{N_{A} \, N_{D}} \right) = \frac{\epsilon_{S}}{9} \, \frac{2 \, N_{B} \, i}{N_{A} \, N_{D}} \left(\frac{N_{$$

• UNIÓN ABRUPTA ASIMÉTRICA:
$$p^+ - N : N_A > N_0 \implies M \simeq \sqrt{\frac{265 V_{Di}}{7 N_D}} = \times_N \implies \times_{p} \simeq 0$$

$$CAMPD: \qquad E(x) = -Em + \frac{9N_0}{65} \times$$

$$DADO QUE E(M) = 0 \implies Em = \frac{9N_0 M}{56}$$

FINDEMENTE CON
$$\psi(0)=0: \psi(x)=\frac{2N_0}{2N_0}(x-x_0)=-\epsilon_m\left(1-\frac{x}{x_0}\right)$$



$$\mathcal{E} = -\frac{d\psi}{dx} ; \frac{d\psi}{dx^2} = -\frac{d\mathcal{E}}{dx} = -\frac{\mathbf{Ps}}{\mathbf{e_s}}$$

. IONIBACIÓN TOTAL:

LUE AD :

. BONA NEUTRA:

$$\frac{d^2 + d}{dx} = 0 \quad \gamma \quad p - n + \lambda p - \lambda A = 0$$

- ZONA NEUTRA TIPO P:

No =0; p>>n
$$\psi = \psi_p \Rightarrow p = N_A = n_i e^{\frac{E_i - E_F}{RT}}$$

CON $\mathcal{E} = \frac{1}{4} \frac{dE_i}{dx} = -\frac{d\psi}{dx} \Rightarrow \psi_p = -\frac{1}{4} \left(E_i - E_p \right)_{x \in -xp} = -\frac{\kappa_T}{4} \ln \left(N_A / n_i \right)$

DEPINIOD CON ORIGIN EN ER

- ZONA NEUTRA TIPO N:

POT. ELECTROSTÁTICO DE LAS BON

NEUTRAS RESPECTO AL NIVEL DE FERMI

DEFINICIÓN: POTENCIAL DE CONTACTO (BUILT-IN), Voi:

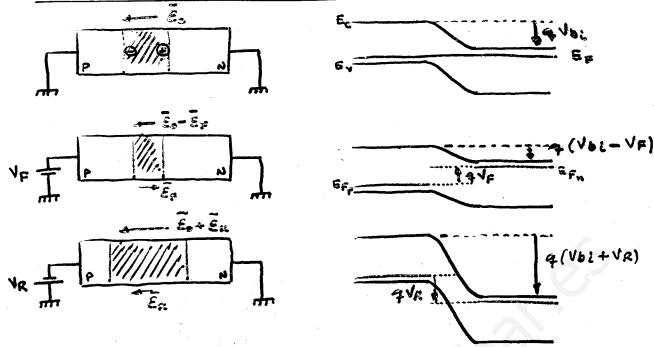
$$V_{bi} \stackrel{\triangle}{=} V_{m} - V_{p} = \frac{KT}{7} lm \frac{N_A \cdot N_b}{n_i^2}$$

ZONA DE CARGA ESPACIAL (O TAMBIÉN ZONA DE DEPLEXIÓN):
. HIPÓTESIS DE DEPLEXIÓN TOTAL:

$$P = M = 0 \implies$$

$$\frac{d^2 + d^2}{dx^2} = \frac{d^2}{ds} (N_A - N_D)$$

8.1.2.2 - UNION ABRUPTA BADO POLARIBACIÓN.



CONSIDERANDO CIERTA TENSIÓN DE POLDRIZACIÓN, V, APLICADA A

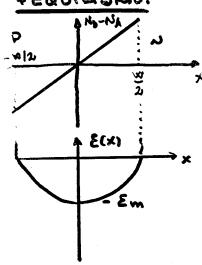
LA ZONA P:

Si VOO : POLARIZACIÓN DIRECTA

2 VLO : POLARIZACIÓN INVERSA.

8.1.2.3. UNION GRADUAL.

+ EQUILIBRIO.

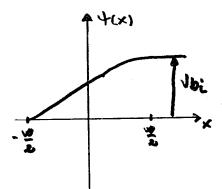


· integrando con E(+ 1/2)=0:

$$\mathcal{E}(x) = -\frac{q\alpha}{65} \left[\frac{(812)^2 - x^2}{2} \right]$$

. CAMPO MÁXÍMO:

$$\mathcal{E}_{m} = -\mathcal{E}(0) = \frac{qa}{6s} \frac{w^{2}}{8}$$



$$\frac{d\Psi}{dx} = - \varepsilon(x) \Rightarrow \int d\Psi = - \int \varepsilon(x) dx \Rightarrow \Psi(-\frac{\pi}{2}) - \frac{\pi}{2}$$

$$0 \Rightarrow original.$$

$$\Rightarrow \psi(x) = \frac{4x}{2\epsilon_5} \left[-\frac{1}{8}x^5 + (\frac{w}{2})^2 x + \frac{2}{5}(\frac{w}{2})^3 \right]$$

. POTENCIAL DE CONTACTO:

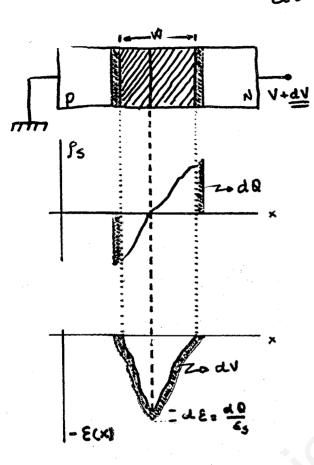
- EF . ANCHURA DE LA Z.C.E .:

. EXPRESIÓN ALTERNATIVA DEL POTENCIAL DE CONTACTO:

+ BAZO POLARIZACIÓN

CON LA MISMA ARGUMENTACIÓN OUE EN EL A PARTADO ANTE-RÍOR :

8.1.3 - CAPACIDAD DE DEPLEXIÓN.



• MIPOTESIS: LA CAPACIDAD DE DEPLEXA
DEPENDE SÓLO DE LA CARGA EN LA Z.C.E

$$de \sim \frac{dv}{w} \Rightarrow dv = wde = w$$

• BAJO POLDRIBACIÓN DIRECTA LA HI TESIS DUTERIOR NO ES VÁLIDA. APA CE UN TÉRMINO ADICIONAL DE CAP CIDAD.

. UNION ABRUPTA:

$$G = \frac{65}{\sqrt{\frac{265}{2(Vbi-V)}}} = \sqrt{\frac{965}{2(Vbi-V)}} \left(\frac{NA-NB}{NA+NB}\right)$$

+ LA MEDIDA DE LA CAPACIDAD DE DEPLEXIÓN PERMITE LA DETERMIN EXPERIMENTAL DE LA DISTRIBUCIÓN DE IMPURBEAS (PERPIL):

TIBLE VARIACIÓN CON LA TENSIÓN DEL VALOR DE LA CAPACITATES (VARACTORES).

S.I. U. Z.- FENÓMENOS DE SEGUNDO ORDEN.

LOS FENÓMENOS QUE PRODUCEN DESVIACIONES DE LAS PREDICCIONES REALIZADAS CON EL MODELO 1060L.

B.J.4.2.1. - EFECTOS DE LA GENERACIÓN-RECOMBINACIÓN Y LA ALTA INY ECCIÓN.

EN LAS Z.C.E. SE PRODUCE GENERACIÓN O RECOMBINACIÓN DE PORTADORES.

• BAJO POLARIZACIÓN INVERSA LA CONCENTRACIÓN DE PORTADORES I LA 8.C.E. ES INFERIOR AL CORRESPONDIENTE VALOR EN EOUTIGRIO ESTO HACE ONE SE PRODUZCON EMISIONES DE ELECTRONES Y HUECOS CON LA INTERVENCIÓN (EN GENERAL) DE CENTROS DE RECOMB. COS PROCESOS DE CAPTURA SON DESPRENABLES PUES LA CONCENTRA-CIÓN DE PORTADORES LIBRES ES DESPRECIABLE BAJO POL. INVERSA.

· con preni y uneni; EN ESTADO ESTACIONARIO:

$$G = -U = \frac{\sigma_p \sigma_h \sigma_{uh} N_t}{\sigma_h \exp \frac{E_t - \overline{B}_t}{KT} + \sigma_p \exp \frac{E_i - \overline{B}_t}{KT}} \cdot n_i = \frac{m_i}{\kappa_i}$$

DE LA ANTERIOR EXPRESIÓN LON ON = OP = 80 SE DEDUCE QUE SÓLO ADDELLOS CENTROS CUYO MUEL LOCALIZADO DE ENERGÍA, EL ES PRÓXIMO AL MUEL INTRÍNSECO, CONTRIBUYEN A LA GENERACIÓN.

· LA CORRIENTE DE GENERACIÓN EN LA Z.C.E. ES:

· ASI, LA CORRIENTE TOTAL BATO POL. INVERSA SUEDA:

PARTICULARIZADA A UND VINÓN ASIMÉTRICA PTN, CON NADAN

1 SIENDO:

15 = 4 DP Pro

16 | Pro

17 | Pro

18 |

• BAJO POLARIZACIÓN DIRECTA LA CONC. DE PORTADORES SUPERA
LOS VALORES EN EQUILIBRIO. LA TENDENCIA DE RETORNO AL EQUILIBRIO HACE QUE SE PRODUZCAN CAPTURAS DE ELECTRONES Y HUBIUS
(RECOMBINACIÓN).

SE TIENE: nm = nmo; pm = pno e xx ->

pn. nn = pno nno exp [2] = n2 e xx

ADEMAS, ASUMIENDO ON = Op = Oo:

$$J = \frac{J_{4n} \sigma_{0} N_{t} \left(p_{n} n_{n} - n_{i}^{2} \right)}{p_{n} + n_{n} + 2 n_{i} \cosh \left[\frac{E_{t} - E_{i}}{\kappa \tau} \right]} = \frac{J_{4n} \sigma_{0} N_{t} n_{i}^{2} \left(e^{\frac{2\pi \tau}{N\tau} - A} \right)}{p_{n} + n_{n} + 2 n_{i} \cosh \left[\frac{E_{t} - E_{i}}{\kappa \tau} \right]}$$

SE DEDUCE QUE LOS CENTROS DE RECOMBINACIÓN DE MÁXIMA EFICIENCIA SON ABUELLOS CUYO NIVEL LOCALIZADO ES EL= E:
PARA CENTROS DE RECOMBINACIÓN DE MÁXIMA EFICIENCIA:

$$U = \sigma_0 \delta_{th} N_t \frac{\eta_1^2 \left(e^{\frac{qV}{NT}}-1\right)}{M_{n+} p_{n+} 2n_1}$$

DADA V, EL VALOR DE U SERÀ MÁXIMO SI LA SUMA MM+PN ES MÍNIMA:

 $d(n_n + p_n) = 0 \Rightarrow dp_n = -dn_n$ (I)

Como $p_n \cdot n_n = n_1^2 e^{\frac{2V}{NT}} = constante$ (V cotá fila): $d(p_n \cdot n_n) = 0 \Rightarrow n_n \cdot dp_n + p_n dn_n = 0$ (II)

(I) Y (II) SE VERIFICAN Si: $p_n = n_n$.

Asi, U Es Máximo si pn= nn:

$$\rho_{n} = n_{i} e^{\frac{E_{i} - E_{F}}{RT}} \\
\rho_{n} = n_{i} e^{\frac{E_{i} - E_{F}}{$$

CONCLUSIÓN:

U ES MÁXIMO SI EL DIVEL INTRIDSECO EQUIDISTA DE AMBOS PSEU-DODÍVELES DE FERMI. ADEMÁS :

POR LO TANTO:

TANTO:

$$U_{\text{max}} = \sigma_0 \, J_{\text{th}} \, N_{\text{t}} \, \frac{n_{\text{i}}^2 \left(e^{\frac{q V}{N_1}} - 1 \right)}{2 \, n_{\text{i}} \left(e^{\frac{q V}{2 \, N_1}} + 1 \right)} \approx \frac{1}{2} \, \sigma_0 \, J_{\text{th}} \, N_{\text{t}} \, n_{\text{i}} \, e^{\frac{q V}{2 \, N_1}}$$

EN ESTAS CONDICIONES, LA CORRIGNTE DE RECOMBINACIÓN SE EXPRESA POR:

$$\int_{\text{rec}} = \int q \, U_{\text{max}} \, dx \simeq \frac{q \, W \, n_i}{2} \, \sigma_0 \, u_{\text{th}} \, N_t \, e^{\frac{q \, V}{2 \, \text{KT}}} = \frac{q \, W \, n_i}{2 \, \text{Tr}} \, e^{\frac{q \, V}{2 \, \text{KT}}} \, \left(\, \tau_r = \left(\, \sigma_0 \, u_{\text{th}} \, N_t \, \right)^{-1} \right)$$

CON LO ONE LA CORRIGNTE TOTAL BAJO POL. DIRECTA, SI Pno >> Mpo ~ 1 >> 3 MT, ES:

UNA EXPRESIÓN EMPIRICA ES LA SI ESTENTE:

ES EL FACTOR DE IDEALIDAD. Nº1 SI DOMINA LA CORRIENTE DE DIPUSIÓN DEL MODELO IDEAL Y 7=2 SI DOMINA LA RECOMBINACIÓN. PARD NIVEUS DE CORRIENTE BAJOS DOMIND LA RECOMBINACIÓN. SI SON INTERMEDIOS LO HAGE LA DIFOSIÓN. PARA NÍVELES DE CORRIENTE ALTOS LA DEPENDENCIA CON LA POLARIBACIÓN DIFIERE DEL VALOR MET. ESTA DI FERRICIA ESTÁ ASOCIADA A:

8.14,2.2,- EFECTOS DE LA TEMPERATURA.

TRUTO BAZO POL. DÍRECTA COMO BAZO POL. INVERSA LAS MASINIVAES
DE LAS CORRÍENTES (DIFUSIÓN 4 GENERACIÓN-RECOMBINACIÓN) DEPENDENDE
LA TEMPERATURA.

Joir = 2 mi LP Tr e 2xt ~ e EG - QV

Jrec. No W TP

1: (T) & T 3/2 e 2xt ~ e 2xt

THE TEMPERATURA AMBIENTE CON VCC = : JOIF, CC Jrec.;

EN CASO QUE LAS TENSIONES DE POLARIZACIÓN SEAN MAYORES;

JJF. >> Jrec. (DOMINAN LOS TÉRMINOS DE DIFUSIÓN).

THE ASI, EL MODELO IDEAL DERÀ MÀS PRECISO CUANTO MÁS ALTA SEA LA TE MPERATURA.

ESTA ECUACIÓN PERMITE LA MEDIDA EXPERIMENTAL DE EG.

· POLARIZACIÓN INVERSA.

QUE RESULTA PROPORCIONAL A Mi.

+ AL AUMENTAR LA TEMPERATURA DOMINA LA CORRIENTE DE DIFUSIÓN.

8.1.5.- FENÉMBNOS DE ALMACENAMIENTO DE CARGAS Y RESPUESTA. TRANSITORIA.

BADO POLARIZACIÓN DIRECTA LOS Q° PROJENTENTES DE LA ZONA
ZONA N SE INVECTAN EN LA P Y HUEROS PROJEMBNIES DE LA ZONA
P SE INVECTAN EN LA N. TRAS LA INVECCIÓN, LOS MIMBRITARIOS
SUFREN RECOMBINACIÓN Y POR TANTO SU CONCENTRACIÓN DECAE
EXPONENCIAL MENTE. ESTA DISTRIBUCIÓN DE MIMBRITARIOS CONLLEVA
POR UN LACO CIERTO PLUZO DE CORRIENTE Y POR OTRO A CIERTO ALMACENAMIENTO DE CARGAS.

8.1.5.1. ALMACENAMIENTO DE MINDIRITATIOS.

EL EXCESO DE MINORITÀRIOS POR UNIDAD DE AREA EN LA ZONA N ES:

$$\frac{Q_p}{Q_p} = q \int (pn - pno) dx = q \int pno \left(e^{\frac{qv}{KT} - 1}\right) e^{-\frac{x - xn}{Lp}} dx = q \int pno \left(e^{\frac{qv}{KT} - 1}\right)$$

EL NÚMERO DE PORTADORES MINORITARIOS ALMACENADOS DEPENDE DE LA LON CITUD DE DIFUSIÓN (Lp, Ln) y DE LA CONCENTRACIÓN DE MINORITÀTHIOS EN EXCESO EN LA FRONTERA DE LA 2.C.E.

EN TERMINOS DE LA CORRIBNTE INTECTADA:

$$Q_p = \frac{L_p^2}{D_p} \exists_p (xn) = \mathbb{E}_p \exists_p (xn)$$

$$Q_n = -\frac{L_n^2}{D_n} \exists_n (-xp) = -\mathbb{E}_n \exists_n (-xp)$$

CA CORRENTE + EL TIEMPO DE VIDA MEDIO DE LOS MIMORITARIOS.

8.1.5.2. CAPACIDAD DE DIFUSIÓN.

BAJO POLARIZACIÓN DIRECTA HAY UN TERMINO DE CADACIDAD ADICIO MAL A LA DE DEPLEXIÓN. ESTÁ ASOCIADO A LOS PORTADORES MINDRITARIOS ALMAGNADOS EN LAS ZONAS NEUTRAS Y SE DENOMINA CAPACIDAD DE DIFUSION.

$$p^+N \rightarrow Ca = A \frac{dQp}{dV} = \frac{Aq^2 Lp p_{10}}{2.KT} Q \frac{q_1V}{MT}$$

$$= DE \Delta N LISIS MÁS DETALLADO(§)$$

SIENDO A EL AREA DE LA SECCIÓN TRANSVERSAL.

& ANALISIS DETALLADO.

EN LO QUE SIQUE, SE CALCULA LA IMPEDANCIA DEL DISPOSITIVO A PARTIR DE LA SOLUCIÓN DE LA ECUACIÓN DE CONTINVIDAD PLANTEADA PARA LOS PORTA-DORES MINORITARIOS. SE ASUME RÉGIMEN SENDIDAL ESTACIONARIO.

$$\frac{\partial p_n}{\partial t} = D_p \frac{\partial^2 p_n}{\partial x^2} - \frac{p_n \cdot p_{no}}{\tau_p} \qquad (A)$$

$$V(t) = V_0 + V_4 \quad \varrho^{jwt} \qquad con \quad V_0 >> V_4 \quad J_0 >> J_4.$$

$$J(t) = J_0 + J_4 \quad \varrho^{jwt} \qquad con \quad V_0 >> V_4 \quad J_0 >> J_4.$$

QUEDA, POR TANTO:

HACIENDO:
$$T_p^* = \frac{\tau_p}{1 + j w \tau_p} + \frac{\partial^2 p_{ni}}{\partial x^2} - \frac{p_{ni}}{D p \tau_p^*} = 0$$

LAS CONDICIONES DE CONTORNO SON:

LUEGO ES PRECISO HALLAR LA SOLUCIÓN DE:

CON LAS CONDICIONES DE CONTORNO:

SE PRUEBA UNA SOLUCIÓN DEL TIPO:

$$p_{n_A}(x) = A e^{-\lambda(x-x_n)} + B e^{\lambda(x-x_n)}$$

SUSTITUYENDO:

SIGNDO Ly = Lp (1+jwtp Y pm (x) = A
$$e^{-\lambda(x-xn)} - \frac{B}{Dp\tau_p^n}$$
 $e^{\lambda(x-xn)} = 0 \Rightarrow A$

CON LAS CONDICIONES DE CONTORNO:

$$P_{MA}(x \rightarrow \infty) = 0 + 8e^{\infty} \rightarrow 8 = 0$$

$$P_{MA}(xn) = A \rightarrow A = \frac{4\sqrt{4} p_{NO}}{\kappa T} e^{\kappa T}$$

POR LO TANTO, LA SOLUCIÓN BUSCADA RESULTA SER:

LA COMPONENTE EN PEQUEÑA SEÑAL DE LA DENSIDAD DE CORRIEN-TE DE HUBLOS ES:

$$J_p(x_n) = -\frac{4Dp}{dx} \frac{dp_{n_1}}{dx} \Big|_{x_n} = \frac{4Dp}{L_p^2} \frac{4V_4}{KT} e^{\frac{2V_0}{KT}}$$

PARA LOS ELECTRONES:

 $Mp_{A}(x) = \frac{qV_{A}Mp_{0}}{KT}e^{\frac{qV_{0}}{KT}}e^{\frac{qV_{0}}{KT}}e^{\frac{+\frac{x+xp}{Ln}}{Ln}}; I_{n}(-xp) = q D_{n}\frac{d_{n}p_{0}}{dx} = \frac{4D_{n}Mp_{0}qV_{0}}{L_{n}}.$

ASI, LA CORRIGIOTE TOTAL EN PEQUEÑA SEÑAL QUEDA:

JA = QUE [q DP PRO + Q DN NPO] Q QVOJKT

LP/JI+jwtp + Ln/JI+jwtn]

SE TIENE QUE:

$$J_{A} = \frac{q}{\kappa T} \left[\frac{4 D p p_{no}}{L p} \cdot \sqrt{1+j w^{\alpha} p} + \frac{q D n m po}{L n} \cdot \sqrt{1+j w^{\alpha} n} \right] e^{\frac{q \sqrt{n}}{\kappa T}} \cdot V_{A}$$

ADMITANCIA EN PEQUEÑA SEÑAL: Y = Ga + ju Cd

PARA BAJAS FREWENCIAS: WTp 261; WTn 461:

Y CON ESTO!

ASÍ, LA CONDUCTANCIA DE DIFUSIÓN SE DEFINE PARA BAJAS FRECUENCIAS:

Y LA CAPACIDAD DE DIFUSIÓN PARA BAJAS FRECUENCIAS:

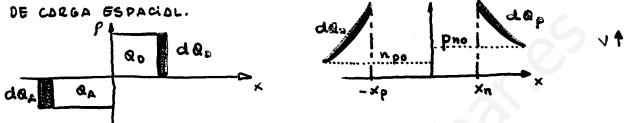
EL CIRCUITO EQUIVALENTE EN PEQUEÑA SEÑAL DE UN DIODO ES:

8.1.5.3. RESPUESTA TRANSITORIA.

FUNCIONA MIGNTO DEL DIODO CUANDO LAS TENSIONES Y LAS CORRIGHTES VARIAN CON EL TIEMPO.

+ MODELD DE CONTROL DE CARGA.

EN RÉGINEN DINÁMICO LAS CORRIENTES, A DEMÁS DE SUSTENTAR LOS PRO-CESOS DE RECOMBINACIÓN DE LOS PORTADORES EN EXCESO, MODÍFICAN LAS CARGAS ACUMULADAS TANTO EN LAS ZONAS NEUTRAS COMO EN LA ZONA



ES IMPOSIBLE VARIAR EN TIEMPO NULO LA CARGA ACUMULADA, POR CONTRA, SI PUEDEN VARIAR BRUSCAMBNTE LAS EORRIENTES (CAMBIO EN EL VALOR DE LA PENDIENTE DE LA DISTRIBUCIÓN DE PORTADORES).

SE BUSCAN RELACIONES DEL TIPO:

HIPO TESIS:

1,- HIPÓTESIS CUASIESTÁTICA: LA DISTRIBUCIÓN INSTANTÁNEA DE PORTADORES EN LAS REGIONES NEUTRAS ES LA MISMA QUE EN RÉGIMEN ESTÁTICO : EL PROBLEMA DINÁMICO ES UNA SUCESIÓN DE SITUACIONES ESTÁTICAS:

$$p_n(x_it)$$

$$p_n(o_it) = p_{no} \exp\left[\frac{2V(t)}{n\tau}\right]$$

$$0 = x_m$$

3. INTECCIÓN DE BAJO NIVEL.

MODELO:

*ECUACIONES DE CONTINUIDAD,
$$\frac{\partial P}{\partial t} = \frac{1}{9} \frac{\partial J_P}{\partial x} - U_P$$
; $\frac{\partial n}{\partial t} = \frac{1}{9} \frac{\partial J_N}{\partial x} - U_P$

MULTIPLICANDOLAS POR JA E INTEGRANDO A LOS LARGO DE TODO EL

DESCOMPONIENDE EL INTERVALO [-xa, xc]:

$$qA \int \frac{\partial P}{\partial t} dx + qA \int \frac{\partial P}{\partial t} dx + qA \int \frac{\partial P}{\partial t} dx = -I_{p}(x_{c}) + I_{p}(-x_{a})$$

$$= -x_{a} - x_{p} - x_{p} - x_{q} - x_{p} - x_{q} -$$

PARA MANTENER LA NEUTRALIDAD EN CADA ZONA:

$$P_p - P_{po} \simeq n_p - n_{po} \Longrightarrow \frac{\partial p_p}{\partial t} \simeq \frac{\partial n_p}{\partial t} \Longrightarrow$$

$$\Rightarrow q A \int \frac{\partial p_p}{\partial t} dx = q A \int \frac{\partial n_p}{\partial t} dx = q A \int \frac{\partial \Delta n_p}{\partial t} dx$$

EL NUMERO DE HUELOS Y EL DE ELECTRONES OUE RECOMBINAN EN CIERTO DE MEN DADO ES EL MISMO (PROCESOS POR PARES):

$$qA\int_{-x_n}^{x_p} U_p dx = qA\int_{-x_n}^{x_p} U_n dx = qA\int_{-x_n}^{x_p} \frac{u_p - u_p}{v_n} dx.$$

ADEMÁS, POR HIPÓTESIS, LA Z.C.E. ESTÁ VACÍA DE PORTADORES. LUEGO

PT SON VARIACIONES TEMPORALES DE LA ANCHURA DE LA Z.C.E. Y

POR TANTO SON VARIACIONES DE LA CARGA NEGATIVA DE IMPUREZAS ACEPTO
RAS IONIZADAS:

$$4A\int_{-x_p}^{x_n}\frac{\partial P_1}{\partial x}dx: \frac{\partial}{\partial x}\int_{-x_p}^{x_n}AAP_1dx = \frac{\partial Q_1}{\partial x}$$

HACIENOD:

OUEDA:

AND LO GA MENTE:

DONDE QUES LA CARGA DE IMPUREZAS DONADORAS EN LA Z.C.E. QUE POR NEUTRA L'OLO GLOBAL DE LA Z.C.E.;

DE Aqui;

TRONG ON OL ANDOD Y HUSCOS ON ST.

CON TODO:

$$i(t) = \frac{dQn}{dt} + \frac{dQp}{dt} + \frac{Qn}{rch} + Jn(-xa) + \frac{Qp}{rcp} + \frac{Jp(xc)}{at} + \frac{aQJ}{at}$$

SIGNDO T' TIEMPOS DE VIDA EQUIVALENTES:

$$\frac{Q_n}{R_n} + \frac{Q_n}{R_n} + \frac{Q_p}{R_n} + \frac{Q_p}{R_n} + \frac{Q_p}{R_n} + \frac{Q_p}{R_n}$$

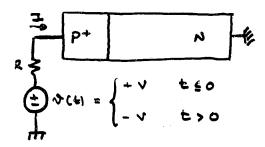
Si EL DIDDO ES LARGO: In (-x=) =0; Ip (xc) =0.

FOUL OF CONTROL OF CARGA!

+ TIEMPO DE TRANSITO.

EN MUCHAS APLICACIONES DE CONMUTACIÓN, UN DIDOD TRANSITA ENTRE UN ESTADO Y OTRODE CONDUCCIÓN.

+ SEA UNA UNION ASIMÉTRICA PTN.



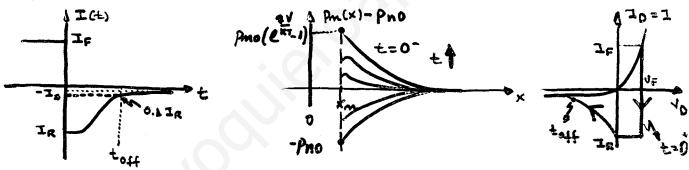
SI V(+) > 0 : POLARIZACIÓN DIRECTA; 1=1F
SIENDO V>> VF , CON VF LA TENSIÓN DE
CONDUCCIÓN DEL DIODO:

SH &>0, LA CORRIGNTE COMMUTA AL

ESTE VALOR (MUY GRANDS) DE LA CORRIENTS INVERSA SE DEBS A QUE LA CARSA ALMACENADA NO POEDS REDISTRIBUIRSE INSTANTÀNEAMENTS.

DE MODO QUE EN t=D+ "EL POTENCIAL" QUE CAS EN LA Z.C.E. SI SUE SIEU.

DO VF>O.



A MEDIDA QUE SE DESALOJA LA CARGA DE LA ZONA NEUTRA DISMINU-45 EL POTENCIAL DE LA UNIÓN (VD) HASTA QUE LA CORRIENTE ES LA DE SATURACIÓN (I=-Is).

SE DEFINE EL TIEMPO DE TRÁNSITO (tott) TAL COMO SE INDICA EN LA PIGURA DE LA IZ OLIERDA: "ES EL INTERVALO TEMPORAL TRANSCURRIDO DESDE QUE SE PRODUCE LA CONMUTACIÓN HASTA QUE LA CORRIGOTE TOMA EL VALOR O.L. IR"

UN CÁLCULO GROSERO ARROJA:

toff
$$\simeq \frac{Q_p \cdot A}{\langle J_2 \rangle} = \frac{J_p}{\langle J_2 \rangle}$$

TO DE ENDUAR UNDIODO PARA APLICACIONES DE CONMUTACIÓN.

8.1.6 - RUPTURA DE LA UNIÓN.

AL APLICAR A UNA UNIÓN PON UNA POLARIBACIÓN INVERSA "GRANDE", EL DISPOSÍTIVO PIERDE LAS PROPIEDADES RECTIFICADORAS Y CONOUCE UNA CORRIGNTE INVERSA MUY DUTA.

LA RUPTURA MO IMPLICA LA DESTRUCCIÓN DEL DISPOSITIVO SI SE CONSIGUE LIMITAR EL MENCIONADO MIVEL DE CORRIENTE EVITANDO EL RECALENTAMIENTO. SE ANDLIZAN DOS MECANISMOS DE RUPTURA:

- i) EFECTO TUNEL
- ii) multiplicación por AVALANCHA. -

S.J. G. A. STECTO TONEL

SE PRODUCE ABBRÍADO A LA GENERACIÓN DE UN PAR ELECTRÓN-HUBCO POR LA EXCITACIÓN ENERGÉTICA DE UN CAMPO ELÉCTRICO INTENSO (3.10 U.Cm-4)
EL EFECTO TÚNEL SE EXPLICA COMO UN FENÓMEND EMINENTEMENTE CUÁNTICO, SE CARACTERIZA POR UN PARÁMETRO DENOMINADO COEFICIENTE DE TRANSMISIÓN DE UNA PARTICULA A-TRAVÉS DE UNA BARRERA DE POTENCIAL.

I,
$$\mathbf{E}$$
:
$$\frac{\hbar^2}{2m_n} \frac{d^2 \Psi}{dx^2} = \mathbf{E} + \Rightarrow \frac{d^2 \Psi}{dx^2} = -\frac{2m_n \mathbf{E}}{\hbar^2} + :$$

$$\mathbf{\Psi}(\mathbf{x}) = \mathbf{A} e^{j \mathbf{K} \mathbf{x}} + \mathbf{B} e^{-j \mathbf{K} \mathbf{x}}$$

$$\mathbf{x} = \mathbf{A} e^{j \mathbf{K} \mathbf{x}}$$

$$\mathbf{x} = \sqrt{\frac{2m_n \mathbf{E}}{\hbar^2}}$$

$$H: -\frac{\pi^{2}}{zm_{n}} \frac{d^{2}+}{dx^{2}} + q \sqrt{0} + = E + \Rightarrow \frac{d^{2}+}{dx^{2}} = -\frac{zm_{n}(q\sqrt{0}-E)}{\pi^{2}} + \frac{1}{2} + \frac{1}{2}$$

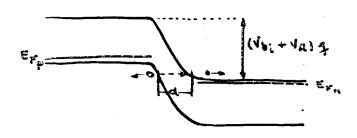
POR CONTINUIDAD DE LA FUNCIÓN DE ONDA Y SU DERIVADA:

$$\left(\frac{C}{A}\right)^{2} \left\{ 1 + \frac{(4 \text{ No Denh (Bal)}^{2}}{4E(4 \text{ No - E})} \right\}^{-1} \longrightarrow \text{ coefficients de transmisión.}$$

$$\partial i$$
 $\beta d >> 1$:
PEOR CASO, 5: (057. $\left(\frac{C}{A}\right)^2 \sim e^{-2\beta d} = e^{-2d} \left(\frac{2mn(a\sqrt{0-5})}{n^2}\right)$

LUEGO PARA QUE EL COETICIENTE DE TRANSMISIÓN SEA APRECIABLE (4 PORTANTO
LA PROGRAMICIONO DE TIMOR), de, mm y Jo Man DE SER <u>PERUEÑOS</u>.

EL EFECTO TÓNGL SE PRODUCE ASOCIADO A UN CAMPO INTENSO, DADO QUE EL VALOR DEL CAMPO MÁXIMO ES PROPORCIONAL A NO 7 A NA, LA CONCENTRACIÓN DE IMPURERAS HA DE SBR MUY ELEVADA. UN VALOR ELEVA-



PLICA OUE LA ANCHURA DE LA Z.C.E. ES
PEQUEÑA.

POR TANTO, EL COEFICIENTE DE TRANS-MISIÓN ASOCIADO AL EFECTO TÚNEL

POSEE UN VAIOR SUPICIENTE COMO PARA QUE SE DE EL EFECTO. (SE OBTIGNEN), EN ESTAS CONDICIONES, VAIORES DE COMPROMISO ENTRE el y VO).

TANTO EN SILICIO COMO EN ARSENIURO DE GALIO, SI LA TENSIÓN IN
VERSA A LA QUE SE PRODUCE LA RUPTURA (TENSIÓN DE RUPTURA) ES

INFERIOR A 469, EL MECANISMO RESPONSABLE ES EL EFECTO TÚNEL.

SI ES SUPERIOR A 666, LA RUPTURA SE DEBE A LA MULTIPLI

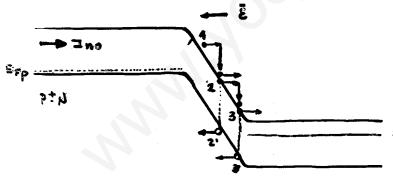
CACIÓN POR DUDIANCHA.

TONGL AMEDS ANALADINA
$$\frac{4E6}{3}$$

$$\frac{6E6}{3}$$

8.1.6.2 - MULTIPLICACIÓN POR DUBLANCUA.

CONSIDERAR AMORA UNA UNIÓN P.D CON CONCENTRACIÓN DE IMPURETAS MODERADA.

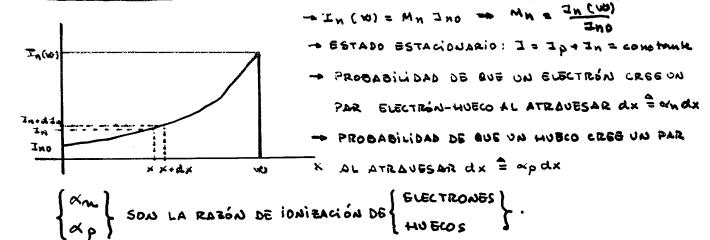


(4): C" GENERASO POR UN PROCESO DE GENERACIÓN TÉRMICA QUE GAMA ENERGÍA CINÉTICA DE CAMPO, SI EL CAMPO
ES INTENSO, UNA COCISIÓN AEL C.

EM CON UN ÁTOMO PUESE ROMPER
UN ONLACE GENERANSO UN PAR (2,21)...
IONIZACIÓN POR IMPACTO

EL PROCESO CONTINÚA A PARTIR DEL ELECTRÓN Z -> (3,3'); 3-> (4,4') ... ->
-- MULTI PLICACIÓN POR AVALANCHA.

CARACTERIZACIÓN



The el increments de la corriente de electrones en x coincide con el número de electrones creados en x por elemendoión de pares electrones en x por elemendo de pares electrones electrones en x por electronic de pares electrones electrones en x por electronic de pares electrones en x coincide con el x por electronic de x por electronic de pares electrones en x por electrones en x coincide con el x por electronic de pares electrones el x por electronic de pares electrones el x por electronic de pares electrones el x por electronic de pares el x por el x por electronic de pares el x por el

 $\frac{d \ln x}{2} = \frac{\ln (d \ln d x)}{2} + \frac{\ln (d \ln d x)}{2}$ (A)

- (1): Proporcional al número de electrones añadidos en x por efecto de los electrones incidiêndo por la 13 on erra.
- (2): Proporciouse de némero de Electrones ababidos em x por efec To de los huecos incidiendo por la derecha.
- DE LA ANTERIOR:

$$\frac{d \exists n}{d x} = \forall n \exists n + \forall p \exists p + \forall p \exists n - \forall p \exists n + \exists p}$$

$$\Rightarrow \frac{d \exists n}{d x} + (\forall p - \forall n) \exists n = \forall p (\exists n + \exists p)$$

$$\exists = \exists n (\forall p)$$

$$\exists = \exists n (\forall p) - \exists n \exists n ($$

LLA PARA LA OUE MN TIENDE A INFINITO, POR TANTO:

$$\int_{0}^{\infty} \alpha \alpha x = 1$$

DE PARTIR DE LA RELACIÓN ENTRE X 4 EL CAMPO SE DETERMINA EL VALOR DE CIERTO CAMPO CRÍTICO QUE VERÍFICA LA ECUACIÓN AN-TERIOR, EG. ASÍ:

8.1.7. - MODELO DE SPICE DEL DIDDO.

EL DIODO SE MODELA EN SPICE COMO UNA RESISTENCIA, R., EN SERIE CON UN DIODO INTRÍNSECO. EL NUDO (+) ES EL ANODO, EL NUDO (-) ES EL CÁTODO. LA CORRIENTE SE CONSIDERA POSITIUA CUANDO FLUYE DESDE EL ÁNODO DL CÁTODO.

CORRIGHTS BU DC:

CAPACIDAD:

NOTA: SE PRESENTAN AL GUNDS RELACIONES PARA DETERMINADOS
UDUORES DE LAS VARIABLES.

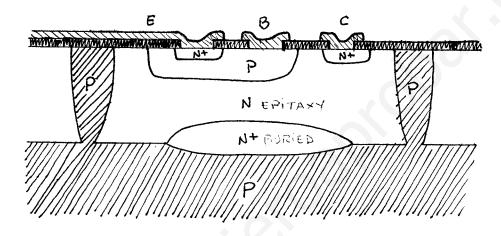
ESTÁN DISPONIBLES, ED EMÁS, MODELOS DE LA INPLUENCIA DE LA TEMPERATURA + DEL RUI DO.

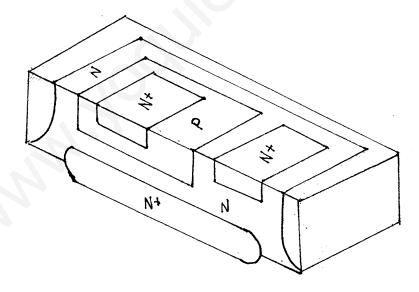
EL TRANSISTOR BIPOLAR, (BJT).

DEFINICIÓN GENÉRICA DEL TRANSISTOR BIPOLAR: "DISPOSITIVO MULTIUNIÓN
QUE EXHIBE LA ACCIÓN DE TRANSISTOR!

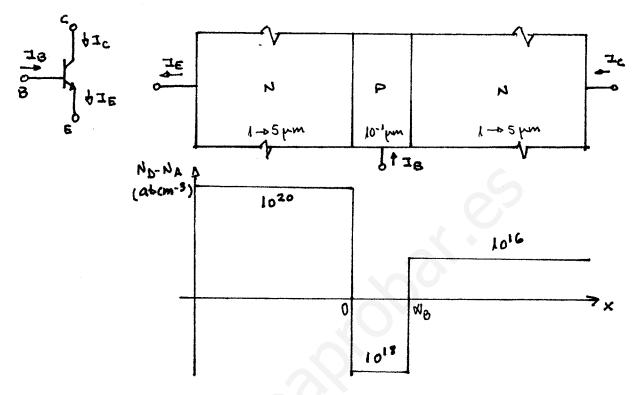
SE ENTIENDE POR ACCIÓN DE TRANSISTOR LA CAPTACIÓN DE PORTADORES MINORITARIOS PROVENIENTES DE UNA UNIÓN PN DIRECTAMENTE POLARIZADA DUE LOS EMITE, POR OTRA UNIÓN PN INVERSAMENTE POLARIZADA MUY PRÓXIMA A LA ANTERIOR.

ESTRUCTURA





LAS PROPIEDADES SIGNIFICATIVAS DEL BJT SE PUEDEN DEDUCIR
DEL TRANSISTOR PROTOTIPO: - MODELO UNIDIMENSIONAL,



CONGIDERANDO QUE SON MAYORITARIOS EN LA BASE LOS PORTADORES QUE SON MINORITARIOS EN LAS REGIONES DE EMISOR Y COLECTOR, SÓLO PUEDEN INYECTARSE A LA BASE UN FLUJO DE MAYORITARIOS EN ELLA DESPRECIABLE, LUEGO, EN LA REGIÓN DE BASE:

$$\frac{1}{1} \int_{0}^{1} \int_{0}^$$

CON LA RELACIÓN DE EINSTEIN:
$$\frac{D}{r} = \frac{\kappa \tau}{2}$$

$$\mathcal{E}_{x} = \frac{\kappa \tau}{2} \frac{1}{P} \frac{dP}{dx}$$

LUEGO, PARA LA DENSIDAD DE CORRIENTE DE ELECTRONES:

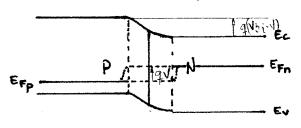
$$J_{m} = q \mu_{n} n \mathcal{E}_{x} + q D_{m} \frac{dn}{dx} = \frac{q D_{m}}{P} \frac{d(p \cdot n)}{dx}$$

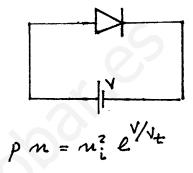
)

SI LA BASE ES ESTRECHA PUEDE EN PRIMERA APROXIMACIÓN DES PRECIARSE LA RECOMBINA-CIÓN EN ELLA, LUEGO IM = cte., Así:

$$\int_{0}^{M_{B}} J_{n} \frac{P}{q D_{n}} dx = \int_{0}^{M_{B}} d(pn) \Rightarrow J_{n} \int_{0}^{M_{B}} \frac{P}{q D_{n}} dx = P(M_{B}) n(M_{B}) - P(D) n(D)$$

RECORDANDO LA LEY DE LA UNIÓN:





$$p(w_8)n(w_8) = n_i^2 e^{V8E/V_{\pm}}$$

 $p(0)n(0) = n_i^2 e^{V8E/V_{\pm}}$

SE TIENE :

$$J_{n} = \frac{m_{i}^{2}}{\int \frac{P}{7 D_{n}} dx} \left[e^{VBC/V_{i}} - e^{VBE/V_{i}} \right]$$

SUPONIENDO DE UNA FUNCIÓN SUAVE DE LA POSICIÓN:

$$\int \frac{P}{9D_n} dx = \frac{1}{9^2 \overline{D}_n} 9 \int P dx = \frac{Q_B'}{9^2 \overline{D}_n}$$

DONDE :

POR TANTO:
$$J_{m} = \frac{q^{2} \overline{D}_{n} n_{i}^{2}}{I} \int e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2} n_{i}^{2}} \int e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2} n_{i}^{2}} e^{-\frac{\pi}{2} n_{i}^{2}} \int e^{-\frac{\pi}{2} n_{i}^{2}} e^{-\frac{\pi$$

COMO A DEMÁS ES:

$$\exists_n = \int_{S} J_n dS = J_n \int_{S} dS = J_n \cdot S \quad \left[\vec{J}_n = + J_n \vec{z} \right]$$

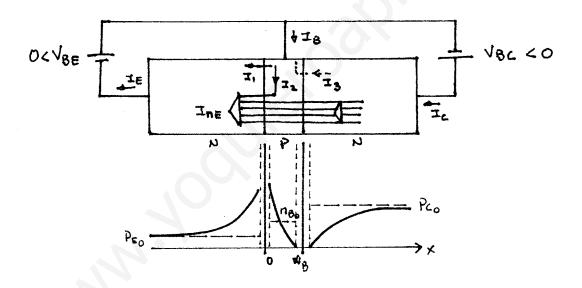
QUEDA:

$$I_n = I_S \left[e^{\frac{V_{8c}}{V_t}} - e^{\frac{V_{8b}}{V_t}} \right]$$

$$I_S = \frac{q^2 \bar{D}_n \, n_L^2 \, S}{Q_2^2}$$

REGIONES DE OPERACIÓN

1) ZONA ACTIVA DIRECTA.



· EL EMISOR INTECTA ELECTRONES A LA BASE QUE SON CAPTADOS

POR EL COLECTOR.

$$I_{c} \simeq -I_{n} (V_{BE}, -\infty) = \frac{q^{2} \overline{D}_{n} N_{L}^{2} S}{Q'_{B}} e^{\frac{V_{BE}}{V_{L}}}$$

$$I_{B} = I_{1} + I_{2} = \left[\frac{45 \text{ Dp N}_{1}^{2}}{\text{Lp NDE}} + \frac{1}{2} \frac{w_{13} + 5 \text{ NBO}}{\text{This}} \right] e^{\frac{\text{VBE}}{\text{Vt}}}$$

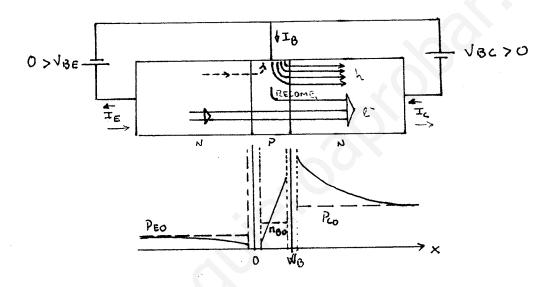
$$INTECCIÓN EN EMISOR RECOMBINACIÓN EN LA BASE$$

SE DEFINEN:

$$\beta_{F} = \frac{\exists c}{\exists B} = \frac{\lambda}{\frac{\text{WB}^{2}}{2 \, \tau_{\text{NB}} \, \overline{D}_{\text{N}}} + \frac{D p}{\overline{D}_{\text{N}}} \frac{\text{WB}}{L p} \frac{N_{\text{A}}}{N_{\text{DE}}}}$$

$$K_{F} = \frac{\exists c}{\exists E} = \frac{\lambda}{1 + \frac{\text{WB}}{2 \, \tau_{\text{NB}} \, \overline{D}_{\text{N}}} + \frac{D p}{\overline{D}_{\text{N}}} \frac{\text{WB}}{L p} \frac{N_{\text{A}}}{N_{\text{DE}}}}$$

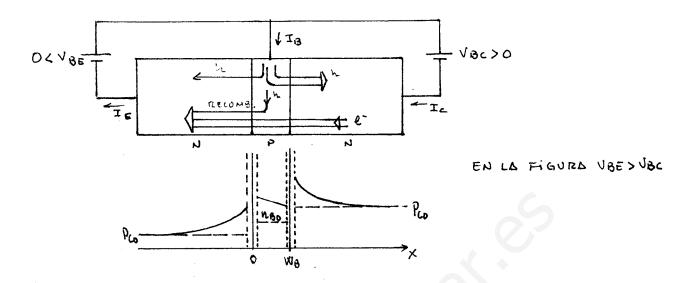
(2) ZONA ACTIVA INVERSA.



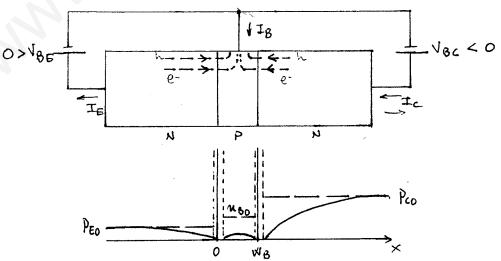
SE DEFINEN EN ESTE CASO $\alpha_R = \frac{\textbf{I}_E}{\textbf{I}_C}$ Y $\beta_R = -\frac{\textbf{I}_E}{\textbf{I}_B}$.

- EL DOPADO ASIMÉTRICO HACE QUE DOMINEN LAS CORRIENTES DE HUECOS EN LA UNIÓN BASE COLECTOR.

(3) ZONA DE SATURACIÓN.



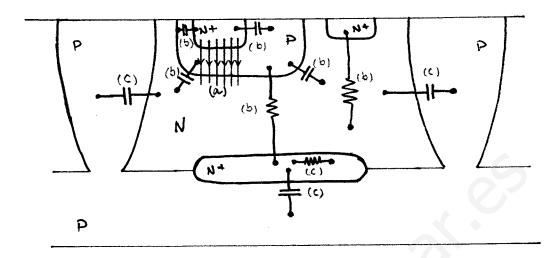
- · EL GRADIENTE DE PORTADORES MINORITARIOS EN LA BASE ES PEQUEÑO Y DIS-MINUYE LA INTENSIDAD DEBIDA A ELECTRONES CIRCULANDO ENTRE
- LA INTENSIDAD DE BASE DUMENTA POR LOS HUECOS EUMINISTRADOS A LA UNIÓN DE COLECTOR.
- · IC DEPENDE FUERTEMENTE DE VCE. IC + (3F IB
 · EXISTE UNA ZONA DIRECTA DE SATURACIÓN (VBE > VBC) Y UNA
 ZONA INVERSA DE SATURACIÓN (VBE < VBC)
- (4) ZONA DE CORTE.



EL GRADIENTE DE MINORITARIOS EN LA BASE ES CASI NULO, ASÍ, NO CIRCULA INTEN-SIDAD APRECIABLE ENTRE LAS UNIONES.

LOS N'NELES DE INTENSIDAD CORRES PONDEN A UNIONES PN INVERSAM. POLDRIZ.

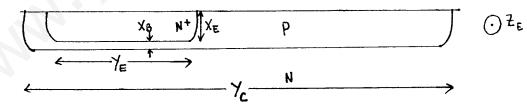
TRANSISTOR BIPOLAR INTEGRADO.



HAY QUE CON TEMPLAR TRES EFECTOS:

- · COMPORTAMIENTO INTRÍNSECO(A),
- · EFECTOS DE LOS PARÁSITOS DISTRIBUIDOS (b),
- · INFLUENCIA DE LOS DISLAMIENTOS (4).

EL COMPORTAMIENTO INTRÍNSECO PUEDE SER DESCRITO UTILIZANDO LA ESTRUCTURA PROTOTIPO (-> MODELO DE EBERS-MOLL).

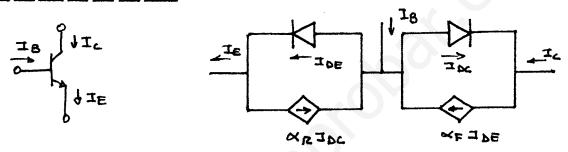


- · YE >> XE : EL AREA DEL EMISOR DEL PROTOTIPO ES S=YEZE
- · COMO LAS ECUACIONES DEL PROTOTIPO DEPENDEN DE MAGNITUDES INTEGRALES (Q'8) NO ES MUY IMPORTANTE QUE EL DOPADO SEA NO UNIFORME.

MODELO DE EBERS-MOLL

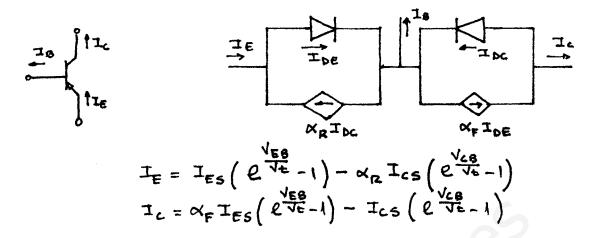
- . MODELA EN GRAN SEÑAL EL BJT.
- · DA CUENTA DE LOS FENÓMENOS DE INTECCIÓN Y EXTRACCIÓN INVOLU-CRADOS.
 - · HIPÓTESIS: INYECCIÓN DÉBIL
 - CAIDA DES PRECIABLE EN LAS REGIONES NEUTRAS.

TRANSISTOR NPW:

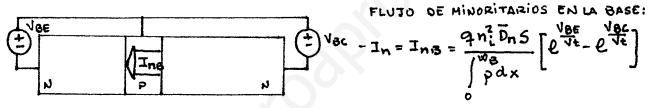


LAS CORRIENTES DE EMISOR Y COLECTOR SE DESCOMPONEN CADA UNA EN DOS CONTRIBUCIONES, UNA ES LA QUE NORMALMENTE PRODUCIRIA EN LA UNIÓN CORRESPONDIENTE POR LA POLARIZACIÓN, LA OTRA, LA MO-DELADA POR LA FUENTE CONTROLADA ES CONSECUENCIA DE LA PRESENCIA DE LA PRESENCIA DE LA PRESENCIA DE LA OTRA UNIÓN Y SE DEBE A QUE UNA PARTE DE LA CORRIENTE PRODUCIDA POR LA POLARIZACIÓN DE ESTA SECUADA UNIÓN SE TRANSPORTA ATRAVÉS DE LA BASE Y ES RECOGIDA POR LA PRIMERA UNIÓN.

TRANSISTOR PNP

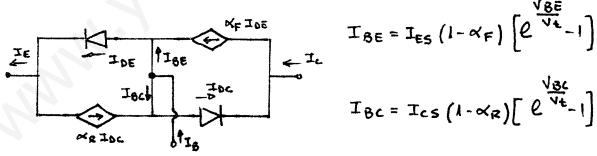


RELACIÓN ENTRE EL MODELO DE EBERS-MOLL Y LA ACCIÓN DE TRANSISTOR.



· INB ES EL TÉRMINO QUE DA LA ACCIÓN DE TRANSISTOR EN UN NPN.
POSTULADO DE RECIPROCIDAD:

COMPONENTES DE LA INTENSIDAD DE BASE:



OPERANDO EN LAS ECUACIONES DE EBERS. MOLL USANDO EL POSTULADO DE RECIPROCIDAD:

PARA OBTENER LA RELACIÓN CON LA ACCIÓN DE TRANSISTOR (Ine):

$$\alpha_{\rm p} \, I_{\rm ES} = \alpha_{\rm p} \, I_{\rm CS} = \frac{4 \, n_{\rm i} \, D_{\rm n} \, S}{\int p \, dx} \equiv I_{\rm S}$$

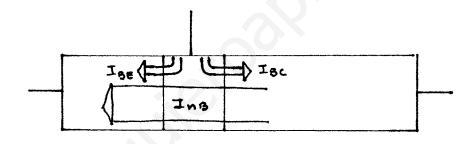
$$I_{\rm E} = I_{\rm nB} + I_{\rm BE}$$

$$I_{\rm C} = I_{\rm nB} - I_{\rm BC}$$

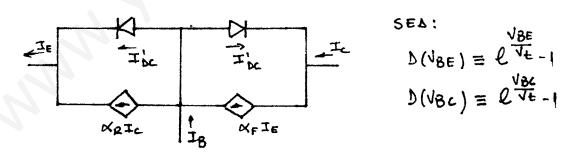
LUEGO PODEMOS CONSIDERAR:

- IBE : DÉRDIDAS POR RECOMBINACIÓN EN LA BASE Y HUECOS INYECTADOS

 DESDE LA BASE AL EMISOR.
- · IBC : PÉRDIDAS POR RECOMBINACIÓN EN LA BASE Y HUECOS INYELTADOS DESDE LA BASE AL COLECTOR.



EXPRESIONES ALTERNATIVAS DEL HODELO DE EBERS-HOLL



SE TIENE:

 $I_{ES} D(VBE) = I_E + \alpha_R I_{CS} D(VBC) , \qquad I_{CS} D(VBC) = -I_C + \alpha_F I_{ES} D(VBE)$ ASi, OPERANDO JUNTO CON EL CIRCUITO ANTERIOR:

LAS INTENSIDADES DE SATURACIÓN DE LOS DIODOS DEL MODELO SON:

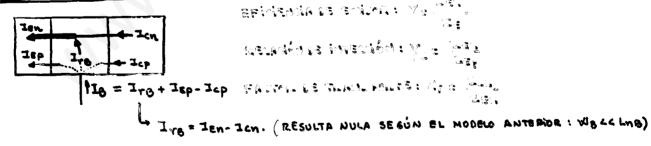
$$\frac{1}{160} + \frac{1}{160} = \frac{1}$$

$$I_{c} = -\left(I_{cp} + I_{cn}\right) = -\left(\frac{4 \text{ AE Dpc pnco}}{L_{pc}} D(NBc) + \alpha \left(-D(NBE) + D(NBc)\right)\right) = 0$$

= a D(UBE) - (a+c) D(UBC) = 1/2 = 1/

PARA METROS

Q = dR 1cs = de 1es = Is (POSTOLADO DE RECIPROCIDAD).



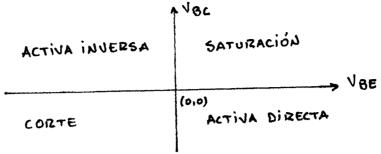
erinemia de enima e Maria.

CALCULO DE 378 : 1 EVELU ANDO LAS CORRIENTES SIN MACER USO DE LA APROX. LINEAL : INB(O)-348(U8)

ADEMAS: IE = IESD(VBE) + or Ics; Ie = of Ies D(VBE) + Ics => Ic = of (IE- or Ies) + Ies = = df IE + (1- dpdR) Ics = df IE + ICEO - df = Ic - Iceo

EL MODELO DE EBERS-MOLL Y REGIONES DE OPERACIÓN.

SE TRATA DE HALLAR EXPRESIONES SIMPLIFICADAS PARA CADA REGIÓN
DE OPERACIÓN:



1) ZONA ACTIVA DIRECTA.

VBE > 0 : UNION BASE EMISOR DIRECTAMENTE POLARIZADA.

VBL 40: UNION BASE-COLECTOR INVERSAMENTE POLARIZADA.

SUPONIENDO 1BE > 41t, -1BC > 41t:

$$I_{c} = x_{F} I_{E} + I_{co}$$

$$I_{E} = I_{ES} \ell^{V_{BE}/V_{E}} + x_{R} I_{cs}$$

$$I_{B} \xrightarrow{\alpha_{R} I_{cs}} I_{co}$$

$$I_{E} \xrightarrow{\gamma_{R} I_{cs}} I_{co}$$

EN FUNCIÓN DE LA GANANCIA EN INTENSIDAD:

$$I_{C} = I_{B} + I_{C}$$

$$I_{C} = \frac{\kappa_{F}}{1 - \kappa_{F}} I_{B} + \frac{I_{CO}}{1 - \kappa_{F}} , \quad I_{E} = I_{ES} \ell^{VE} + \kappa_{R} I_{CS}$$
a) EN DEQUERA SERAL:
$$h_{fe} = \frac{\partial I_{C}}{\partial I_{B}} - \frac{\kappa_{F}}{1 - \kappa_{F}}$$

5) EN GRAN SENAL:
$$h_{FE} = \beta_F = \frac{1}{13} = \frac{\alpha_F}{1-\alpha_F} + \frac{1}{1-\alpha_F} = \frac{\alpha_F}{10} \approx h_{fe}$$

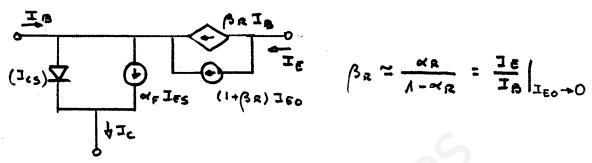
The series (1+\beta_F)1co

The series (1+\beta_F)1co

(2) ZONA ACTIVA INVERSA.

VBE CO : UNION B-E INVERSAMENTE POLARIZADA

VAL > 0 : UNION B.C DIRECTAMENTE POLDRIZADA.



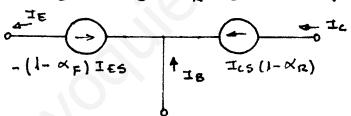
(3) ZONA DE CORTE.

UNIONES INVERSAMENTE POLARIZADAS.

)

SUPONIENDO - YBE > 4 Vt , - VBC > 4 Vt :

$$I_c = - \alpha_F I_{ES} + I_{LS} = I_{LS}(1-\alpha_R)$$



UNA APROXIMACIÓN MÁS GROSERA ES:

EN LA PRÁCTICA, DOMINAN

LAS INTENSIDADES POR FU-

GAS Y GENERACIÓN TÉRMI-

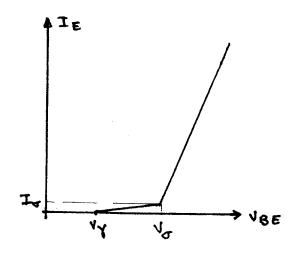
CA (DEL ORDEN DE INA).

DEFINICIÓN DE TENSIÓN DE CUTIN: ES AQUEL VALOR DE 186 QUE

SACA DE CORTE AL TRANSISTOR METI ÉNDOLO EN PONA ACTIVA DIRECTA:

D(1BC)=-1, XRICS = XFIES

Si X= ~ 1: IE ~ JES & NE _ JEO & NE SE TIENE: $I_E = I_{ES} \ e^{\frac{\sqrt{8}E}{\sqrt{t}}} = \frac{I_{EO}}{I_{-}\kappa_F\kappa_R} \ e^{\frac{\sqrt{8}E}{\sqrt{t}}}$ considerar un modelo lineal a tramos:



SEA IS EL VALOR TÍDICO DE LA INTENSIDAD EN EL BORDE DE ZONA ACTIVA DIRECTA: IMA.

$$I_{\gamma} = \frac{I_{\sigma}}{100}$$

Vo - Vy = Vt h 100 = 120mV

$$V_{\sigma} = V_{t} \ln \left[\frac{I_{\sigma}}{I_{ES}} \right] \approx 0.75 \text{ J}$$

$$V_{\gamma} = V_{\sigma} - 0.12 = 0.63 \text{ J}$$

4 ZONA DE SATURACIÓN.

18E>0

UNIONES DIRECTAMENTE POLORIZADAS.

18C>0

- · EN SATURACIÓN :
 - LA INTENSIDAD DE COLECTOR ES MUY DEPENDIENTE DE VCE.
 - LA GANANCIA EN INTENSIDAD DISMINUYE RESPECTO A LA

ZONA ACTIVA DIRECTA: BSAT C BF.

CON EL MODELO DE EBERS-MOLL Z:

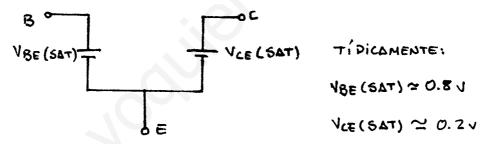
$$VBE = J_{\pm} ln \left\{ 1 + \frac{(I-\alpha_R)I_{C+IB}}{I_{EO}} \right\}$$

$$VBC = J_{\pm} ln \left\{ 1 + \frac{\kappa_F I_{B} - (I-\alpha_F)I_{C}}{I_{CO}} \right\}$$

OPERANDO CON LA PRIMERA Y DESPRECIANDO IEO:

CON LA SEGUNDA:

LUEGO UN MODELO APROXIMADO EN SATURACIÓN ES:



SE DEFINE EL SIGUIENTE PARAMETRO:

- . O = 1 : ZONA ACTIVA DIRECTA
- . Q ES UND MEDIDA DE LO PROFUNDA MENTE QUE EL TRANSISTOR EGTA EN SATURACIÓN.
- . O ALCANZARA UN VALOR MENOR EN ZONA ACTIVA INVERSA:

IB SIZE
$$\beta_R = -\frac{IE}{IB}$$
, $IE = IB + Ic = b$ $Ic = IE - IB = -(\beta_R + I)IB$

$$\sigma = \frac{Ic}{\beta_F IB} = -\frac{\beta_R + I}{\beta_F}$$
LUE GO:
$$-\frac{I + \beta_R}{\beta_F} \le \sigma \le I$$

PARA LADA TRANSISTOR, BRY BF DADOS, PUEDE REPRESENTARSE VCE (GAT) FRENTE A & PARA CONSEGUIR UNA ESTIMACIÓN SOBRE COMO OBTENER VALORES MÍNIMOS DE VCE (SAT).

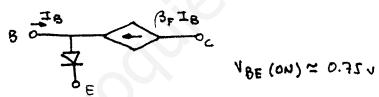
- . O SE CONTROLD POR EL CIRCUITO EXTERNO.
- · Si &>0: SATURACIÓN DIRECTA

O CO : SATURACIÓN INVERSA.

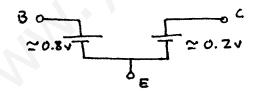
VALORES TIPICOS Y MODELOS APROXIMADOS

$$\alpha_F \simeq 0.98$$
 , $\alpha_R \simeq 0.25$

ZONA ACTIVA DIRECTA:



ZONA DE SATURACIÓN DIRECTA:



ZONA DE CORTE;

FENOMENOS DE SEGUNDO ORDEN EN EL BJT.

EN TRANSISTORES REALES, LA DESCRIPCIÓN HECHA, ES PRECISA SOBRE UN AMPLIO RANGO DE CONDICIONES PERO EN GENERAL, EXISTEN DIFERENCIAS:

- EFECTO EARLY,
- EFECTOS A POLARIZACIONES ALTAS Y BAJAS,
- RESISTENCIA DE BASE.

EFECTO EARLY.

EN EL MODELO IDEAL, LA INTENSIDAD DE COLECTOR EN ZONA ACTIVA DIREC-

Ic = x Fixe Te +

TA NO DEPENDEDE VCE:

NIC VOE

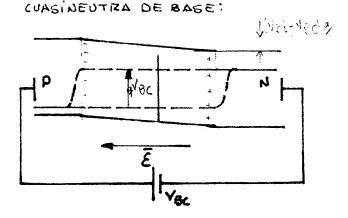
EN TRANSISTORES REALES, SIN EMBARGO: IC = f (VBE, VCE)

1 VBE

SE MODELA: $\frac{\sqrt{ge}}{\sqrt{1 + \frac{\sqrt{ce}}{\sqrt{Va}}}} \mathcal{L}^{\frac{\sqrt{Ve}}{\sqrt{Ve}}}$ (RELACIÓN EXPERIMENTAL).

EN LA PRACTICA VA SE CONSIDERA COMO EL PUNTO DE CORTE CON \underline{I}_c = 0 DE LAS PROLONGACIONES DE LAS CURJAS EN ZONA ACTIVA DIRECTA, NO NECESARIAMENTE ES FIJO PARA CADA VBE.

·EL EFECTO EARLY SE DEBE A LA MODULACIÓN DE LA ANCHURA DE LA REGION



· VBC POLDRIZACIÓN DIRECTA, DISMINUYE EL CAMPO ELÉCTRICO EN LA Z.

C.E., LA CORRIENTE DE DIFUSIÓN ES
DOMINANTE SOBRE LA DE ARRASTRE
(HUECOS HACIA LA ZONA N Y ELEC-

TRONES HACIA LA P).

· VBC < O: POLARIZACIÓN I NUERSA, <u>SUMENTO EL CARLAD ELÉCTRICOEN LA Z.C.E.</u>,

LA CORRIENTE DE ARRASTRE ES DOMINANTE SOBRE LA DE DIFUSIÓN (HUECOS HACIA

LA PONA PY EXECTIZONES HACIA LA N).

4 => DUMENTA LA ANCHURA DE LA Z.C.E. (AUMENTA LA CARGA FIJA

L=
$$\sqrt{\frac{265}{7}} \left(\frac{1}{N_D} + \frac{1}{N_A} \right) (Vbi-VBC) \propto \sqrt{Vbi+VCB}$$

L AUMENTA CON VCB.

SI AUMENTA L, DISMINUYE WB CON LO
QUE AUMENTA LA PENDIENTE DEL PERFIL
DE LA CONCENTRACIÓN DE HINORITARIOS

EN LA BASE.

EN Z.A.D.:
$$I_c \simeq I_{nB} = \frac{q n_c^2 \leq \bar{D}_n}{\sqrt{q}} e^{\sqrt{q}}$$

ADEMÁS: $I_c \propto \frac{dn}{dx}$

DEPENDENCIA CON LA LANCHORIA DE LA REGIÓN CUASIMEUTRA DE BASE.

ASÍ, UN AUMENTO DE VOB IMPLICA UN AUMENTO DE LA PENDIENTE REFERIDA Y POR TANTO UN AUMENTO DE IC.

· LA DISMINUCIÓN DE WB TIENE DOS CONSECUENCIAS:

(A) EL GRADIENTE DE LA CONCENTRACIÓN DE PORTABORES MINORITARIOS EN LA BASE ES MAYOR Y DORTANTO AUMENTA LA CORRIENTE DE MINORITARIOS INYECTADA, DEL AREA BAJO LA CURUA ES MENOR, LUEGO LA CORRIENTE DE DÉRDIDAS POR RECOMBINACIÓN EN LA BASE DISMINUYE (IB DISMINU-YE) Y POR TANTO AUMENTA IC.

AMBOS FACTORES CONTRIBUYEN A UN DUMENTO DE LA INTENSIDAD DE COLECTOR.

OPERANDO:

$$\frac{\partial I_{c}}{\partial V_{cE}} = \frac{\partial I_{c}}{\partial V_{cB}} \Big|_{V_{BE} = cte.} = \frac{q n_{c}^{2} S \bar{O}_{n} P(w_{B})}{\left[\int_{0}^{w_{B}} \rho dx\right]^{2}} \frac{V_{BE}^{3E}}{\partial V_{cB}}$$

DEFINIR:

$$V_{A} = \frac{\int \rho \, dx}{\rho(W_{8}) \frac{\partial W_{8}}{\partial V_{C8}}} \angle O \quad (W_{8} \text{ bisminuye si VC8 CRECE}).$$

ASi:

)

REDEFINIENDO Ic:

OBSERVAR QUE:

go =
$$\frac{\partial I_c}{\partial V_{CE}} = 0$$
 (CASO IDEAL)

- · VA SUELE CONSIDERARSE CONSTANTE,
- · EL EFECTO EARLY ES IMPORTANTE EN CIRCUITOS ANALÓGICOS,
- DE BASE, PERO SE DISMINUYE IS.

INTENSIDADES PARA POLARIZACIONES DEBILES

RECORDEMOS LAS EXPRESIONES DE IB E IC EN EL CASO IDEALPARA
ZONA ACTIVA DIRECTA:

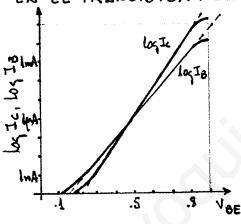
$$I_{C} = \alpha_{F} I_{ES} e^{\frac{\sqrt{6E}}{\sqrt{E}}}$$

$$I_{B} = I_{E} - I_{C} = I_{ES} e^{\frac{\sqrt{6E}}{\sqrt{E}}} - \alpha_{F} I_{ES} e^{\frac{\sqrt{6E}}{\sqrt{E}}} = (1 - \alpha_{F}) I_{ES} e^{\frac{\sqrt{6E}}{\sqrt{E}}}$$

OPERANDO:

AL REPRESENTARLAS, AMBAS SERÍAN RECTAS.

EN EL TRANSISTOR REAL:



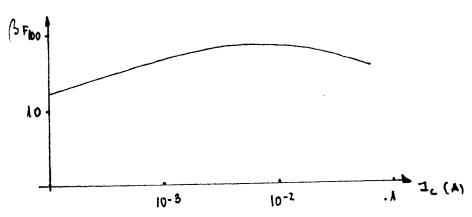
- · Ic SEAJUSTA BASTANTE BIEN EN
 TODO RANGO.
- A BAJAS POLARIZACIONES IB SE AJUSTA

 MEJOR A: IB = IO P ZVL,

ESTO ES PORQUE PARA VALORES PEQUE EN IB NOS DE VIBE DOMINA LA CORRIENTE DE

RECOMBINACIÓN EN LA ZONA DE CARGA ESPACIAL, J. NO SE VE AFECTADA PORQUE ESTA CORRIENTE NO ES COLECTADA AL COLECTOR.

ESTO HACE QUE $G_F = \frac{I_c}{I_B}$ NO SEA CONSTANTE EN ZONA ACTIVA DIRECTA:



INVECCIÓN DE ALTO NIVEL

SI LA INTECCIÓN DE PORTADORES MINORITARIOS EN LA BASE ES
ELEVADA, NO PUEDE SUPONERSE QUE LA DISTRIBUCIÓN DE MAYORITARIOS ES LA DE EQUILIBRID TERMILD.

RECORDAR QUE LA EXPRESIÓN DE IL EN ZONA ALTIVA DIRECTA CUAN DO SE DESPRECIA LA RECOMBINACIÓN EN LA BASE ES:

$$\exists c = \exists ns = \frac{3^2 n_i^2 s \, \overline{D} n}{Q_a^2} \, e^{\frac{VBE}{VE}}$$

OVE DEPENDE DE LA CARGA INTEGRAL:

$$O_8' = 9 \int_0^{\sqrt{8}} P_8(x) dx$$

EN INYECCIÓN DÉBIL:

SI NO ES ASÍ NOTAMOS QUE:

- CUASINEUTRALIDAD DE LA BASE: $p_{B}(x) = N_{AB}(x) + m_{B}(x)$ (CON $n_{B}(x)$ LOS MINORITARIOS).

WEGO:

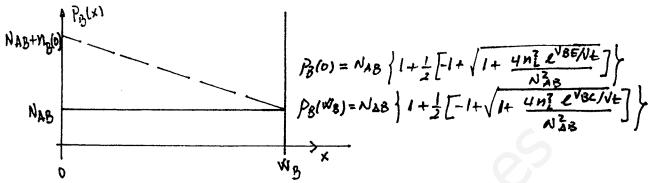
$$m_{g(x)} \left[N_{AB}(x) + n_{g(x)} \right] = n_{i}^{2} e^{\frac{V(x)}{V+}} \Rightarrow n_{g(x)}^{2} + n_{g(x)} + n_{g(x)} \cdot n_{g(x)} - n_{i}^{2} e^{\frac{V(x)}{V+}} = 0 \Rightarrow$$

$$\gg M_8(x) = \frac{N_{AB}(x)}{Z} \left[-1 + \sqrt{1 - \frac{4 n_1^2 \ell^{V(x)} J_E}{N_{AB}^2(x)}} \right]$$

CON LO ONE:

$$P_{B}(x) = N_{AB}(x) \left\{ 1 + \frac{1}{2} \left[-1 + \sqrt{1 - \frac{4n_{i}^{2} e^{\sqrt{ix}}}{N_{AB}^{2}(x)}} \right] \right\}$$

PARA OBTENER UNA EXPRESIÓN SUPONER DOPADO UNIFORME, DESPRE CIAR LA RECOMBINACIÓN EN LA BASE, ES DECIR, SUPONER OUE LA DISTIZIBUCIÓN DE MINDRITARIOS ES LINEAL:



LA DISTRIBUCIÓN DE MINORITORIOS ES:
$$\rho_{B}(x) = -\frac{n_{i}^{2} e^{\frac{\sqrt{BE}}{2\sqrt{L}}}}{W_{B}} \times + n_{i} e^{\frac{\sqrt{BE}}{2\sqrt{L}}} + N_{AB}$$

INTEGRANDO:

$$Q'_8 = 4 \left\{ \frac{n! e^{\frac{\sqrt{8E}}{2\sqrt{L}}}}{2} W_8 + N_{AB} W_8 \right\}$$

Si VBE ES LO SUFICIENTEMENTE GRANDE:

CON LO QUE:

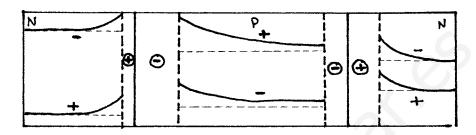
RESISTENCIA DE BASE

DADO QUE LA REGION DE BASE ES MUY ESTRECHA LA RESISTENCIA ASD CIADA DUEDE SER IMPORTANTE: R = P => RT SI A +

ALMACENAMIENTO DE CARGA EN TRANSISTORES BIPOLARES.

EN UN BIT PUEDEN ALMACENARSE DOS FORMAS DE CARGA:

- CARGAS ASOCIADAS A PORTADORES INTECTADOS EN LAS
 REGIONES NEUTRAS.
- CARBAS ASDCIABAS A LAS ZONAS DE CARBA ESPACIAL.



AMBOS TIPOS DE CARGA GON CONTROLA BLES POR LAS TENSIONES EXTERNAS:

- PORTADORES INTECTADOS :

BASADOS EN EL SIGUIENTE CÁLCULO EN BAJA INTECCIÓN:

$$n(0) = meq + \Delta n(0) \Rightarrow \Delta n(0) = n(0) - neq , n(0) = \frac{n^2}{p(0)} e^{\frac{NBE}{1+2}} \approx \frac{n^2}{NA} e^{\frac{NBE}{1+2}} = neq e^{\frac{NBE}{1+2}} \Rightarrow \Delta n(0) = neq \left(\frac{exp(Ne)}{1+2} - 1\right)$$
SE DEFINEN:

DONDE OFO Y ORO SON FONCIONES DE LA GEOMETRÍA Y DE LOS PERFILES DE DOPADO.

- CARGAS EN LA Z.C.E.: SE CALCULAN ASOCIADAS A CAPACITORES DE UNIÓN

$$Q_{DE}(VBE) = -C_{jEO} \int_{0}^{\sqrt{BE}} \left(1 - \frac{\sqrt{V}}{\phi_{E}}\right)^{-m_{E}} dV + Q_{DE}(0)$$

$$Q_{DC}(VBC) = -C_{jCO} \int_{0}^{\sqrt{BC}} \left(1 - \frac{\sqrt{V}}{\phi_{C}}\right)^{-m_{C}} dV + Q_{DC}(0)$$

LAS CARGAS ESTÁN RELACIONADAS CON LAS INTENSIDADES DEL TRAN-SISTOR:

- EN RÉGIMEN ESTÀTICO LA INTENSIDAD DE PORTADORES MINO-RITARIOS EN LA BASE DEPENDE DE LA CARGA EXCEDENTE EN DICHOS PORTADORES.
- EN RÉGIMEN DINÁMICO HAY QUE SUMINISTRAR LA INTEN-SIDAD NECESARIA PARA ALTERAR LAS CARGAS ALMACENA DAS TANTO DE INVECCIÓN COMO DE DEPLEXIÓN

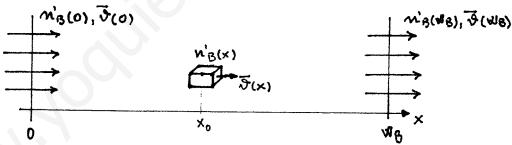
TIEMPO DE TRANSITO EN LA BASE : RÉGIMEN ESTÁTICO

EN RELACIÓN CON LA ACCIÓN DE TRANSISTOR, LOS PORTADORES

MINORITARIOS EN LA BASE SON INYECTADOS POR EL EMISOR, ATRAVIE

SAN LA BASE Y SON EXTRAIDOS POR EL COLECTOR.

; SE INVIERTE CIERTO TIEMPO EN ATRAVESAR LA REGIÓN DE BASE!



LA INTENSIDAD DE PORTADORES MINORITARIOS CIRCULANDO POR LA BASE ES PROPORCIONAL A LA CARGA DE DIFUSIÓN DE MINORITARIOS EN DICHA REGIÓN.

$$\overline{J}_{NB}(x) = -q n'_{B}(x) \vartheta(x) \overline{\lambda} \Rightarrow 0$$

$$\Rightarrow \int \overline{J}_{NB}(x) dx = -q \int n'_{B}(x) \vartheta(x) dx$$

SUPONIENDO DESPRECIABLE LA RECOMBINACIÓN EN LA BASE (JNB (x) = cte)

Y QUE LA JELOGIDAD ES UNA FUNCIÓN SUAVE DE LA POSICIÓN:

$$J_{NB} \cdot W_{8} = -q \tilde{v} \int_{0}^{W_{8}} m_{8}(x) dx$$

CON T VELOCIDAD PROMEDIO

RECORDANDO IC = - Ing. &

$$I_c = \frac{45}{(\frac{\sqrt{8}}{3})} \int_0^{\sqrt{8}} n_{\beta}(x) dx = \frac{Q_B}{T_B}$$

• ∫ M'B dx : CARGA POR UNIDAD DE SUPERFÍCIE ASOCIADA A LOS POR

TADORES MINORITARIOS ÎN YECTADOS

SITO PROMEDIO EN ATRAVESAR LA BASE.

 $.0_8 = 95 \int_{n_8'(x)}^{w_8} (x) dx > 0$: CARGA ASOCIADA A LOS PORTADO-

POR OTRO LADO:

$$T_{C} = \frac{95 n_{L}^{2} \overline{D}_{n}}{\int_{\mathcal{B}}^{W_{B}} P_{B}(x) dx} = \frac{95 \int_{0}^{W_{B}} n_{B}^{2}(x) dx}{T_{B}}$$

WEGO:

$$T_{B} = \frac{95 n_{L}^{2} \overline{D}_{n}}{\int_{0}^{W_{B}} p_{B}(x) dx} = \frac{95 \int_{0}^{W_{B}} n_{B}^{2}(x) dx}{T_{B}}$$

$$T_{B} = \frac{95 n_{L}^{2} \overline{D}_{n}}{\int_{0}^{W_{B}} p_{B}(x) dx} = \frac{95 \int_{0}^{W_{B}} n_{B}^{2}(x) dx}{T_{B}}$$

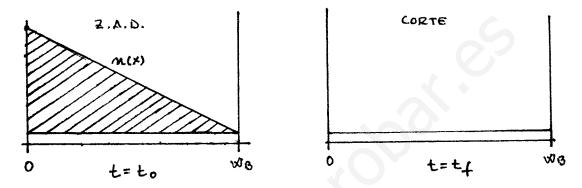
PARA EL TRANSISTOR PROTOTIPO EN BAJA INTECCIÓN: N_{B} N_{B}

 $\mathcal{T}_{\mathcal{B}} = \frac{n_{\mathcal{B}0} \, N_{AB} \, \mathcal{W}_{\mathcal{B}}^{2}}{2 \, n_{\tilde{c}}^{2} \, \overline{D}_{n}} = \frac{\mathcal{W}_{\mathcal{B}}^{2}}{2 \, \overline{D}_{n}} \quad \text{DUES} \quad n_{\mathcal{B}0} \, N_{AB} = n_{\tilde{c}}^{2}$ $\forall A \, \text{QUE} \, N_{AB} \simeq \rho_{\mathcal{B}0}$

MODELO DE CONTROL DE CARGA

EN RÉGIMEN DINÀMICO, LA CARGA ALMACENADA EN LAS DISTINTAS REGIONES DE UN TRANSISTOR CAMBIA :

IMAGINAR UNA TRANSICIÓN DE ZONA ACTIVA DIRECTA A CORTE; EN LA REGIÓN NEUTRA DE BASE HA Y QUE DESALOJAR CIERTA CANTIDAD DE CARGA;



HAY QUE DEGALOJAR DE LA BASE TODA LA CARGA RAMDA.

EL DESDLOJO DE CARGO NO PUEDE HACERSE INSTANTANEAMENTE, NECESI-

- RESOLVIENDO LA ECUACIÓN DE CONTINUIDAD EN DERIVADAS
 PARCIALES (- MODELO DISTIZIBUIDO),
- * APLICAR UN MODELO CUASIESTÁTICO QUE EXPRESE LA EVOLU-CIÓN COMO UNA SECUENCIA DE SITUACIONES ESTÁTICAS,
 - APLICAR UN MODELO LI NEAL A TRAMOS USANDO CONDENSADORES PROMEDIO.

EL MODELO DE CONTROL DE CARGA ES UN MODELO CUASIESTÁTICO:
"LA VELOCIDAD DE VARIACIÓN DE TENSIONES E INTENSIDADES ES
SUFICIENTEMENTE PEQUEÑA COMO PARA QUE LA DISTRIBUCIÓN
DE CARGA EN LAS DISTINTAS REGIONES SEA UNA SECUENCIA
DE DISTRIBUCIONES ESTÁTICAS".

to to

PARA INTERVALOS TEMPORALES DEL ORDEN DEL TIEMPO DE TRÁNSITO EN LA BASE LA APROXIMACIÓN CUASIESTATICA DA LUGAR A ERRORES.

VALIDEZ: At >> TB.

OBJETIJO BÁSICODEL MODELO DE CONTROL DE CARGA:

- EXPRESAR TODAS LAS INTENSIDADES TERMINALES EN FUN CIÓN DE CARGAS ALMACENADAS EN EL TRANSISTOR.

$$i_{g} = \int_{B} \left[Q_{F}, Q_{R}, Q_{VC}, Q_{VE} \right]$$

$$i_{c} = \int_{C} \left[Q_{F}, Q_{R}, Q_{VC}, Q_{VE} \right]$$

SIENDO:

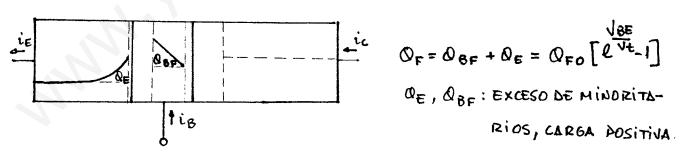
 $O_{VC} = O_{DC}(O) - O_{DC}(VBC)$, $O_{VE} = O_{DE}(O) - O_{DE}(VBE)$

OCORRIENTE ASOCIADA A LAS CARGAS DE INTECCIÓN

LAS CARGAS DE INTECCIÓN SE DESCOMPONEN EN DOS COMPONENTES:

- LAS ASOCIADAS A LA UNIÓN BASE-EMISOR,
- LAS ASOCIADAS A LA UNIÓN BASE-COLECTOR.

@ UNIÓN BASE-EMISOR:



UTILIZANDO LA APIZOXIMACIÓN CUASIESTÁTICA:

$$i_c = \frac{Q_F}{\tau_E}$$

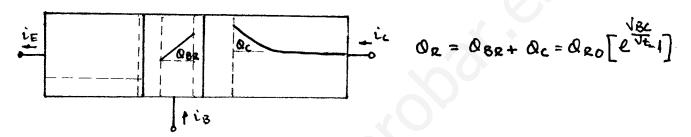
SIENDO TE UNA EXTENSIÓN DEL CONCEPTO DE TIEMPO DE TRÁN-SITO EN LABASE (TE > TB). LA CORRIENTE DE BASE DA CUENTA DE LOS TÉRMINOS ESTACIONA RÍOS Y DE LOS CAMBIOS TEMPORALES EN QF:

$$ig = \frac{Q_F}{\tau_{gF}} + \frac{dQ_F}{dt}$$

LUE GO:

$$i_E = i_C + i_B = O_F \left(\frac{1}{\tau_F} + \frac{1}{\tau_{BF}} \right) + \frac{dQ_F}{dt}$$

(b) UNION BASE COLECTOR:



ANALOGAMENTE AL CASO ANTERIOR:

$$i_{B} = \frac{Q_{F}}{\tau_{BF}} + \frac{dQ_{F}}{dt} + \frac{Q_{R}}{\tau_{BR}} + \frac{dQ_{R}}{dt}$$

$$i_{C} = \frac{Q_{F}}{\tau_{F}} - Q_{R} \left(\frac{1}{\tau_{R}} + \frac{1}{\tau_{BR}} \right) - \frac{dQ_{R}}{dt}$$

$$i_{E} = Q_{F} \left(\frac{1}{\tau_{C}} + \frac{1}{\tau_{RF}} \right) + \frac{dQ_{F}}{dt} - \frac{Q_{R}}{\tau_{C}}$$

DE NUEVO TR ES UNA EXTENSIÓN DEL CONCEPTO DE TIEMPO DE TIZÁNSITO EN LA BASE.

· TF, TBF, TR, TBR PUEDEN DBTENERSE MEDIANTE TÉC-NICAS EXPERIMENTALES.

2 CORRIENTE ASOCIADA A LAS CARGAS ESPACIALES

ES LA QUE CIRCULA POR LOS TERMINALES PARA CAMBIAR QUE Y QUE:

$$Q_{v} = Q_{0}(0) - Q_{0}(v) = C_{j0} \int_{0}^{v} (1 - \frac{\xi}{\phi_{0}})^{-m} d\xi =$$

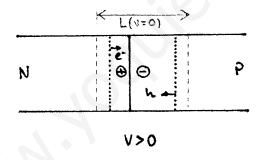
$$Q_{V} = \frac{c_{jo}}{1-m} \phi_{o} - \frac{c_{jo}}{1-m} \phi_{o}^{m} (\phi_{o} - V)^{1-m}$$

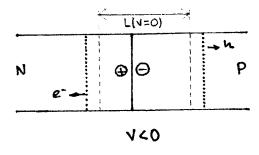
DONDE Cjo ES LA CAPACIDAD DE LA UNIÓN A POLARIZACIÓN NULA Y MEL PARA:

UNIÓN ABRUPTA:
$$M = 1/2$$
: $Q_V = 2 c_{j0} \phi_0^{1/2} \left[\phi_0^{1/2} - (\phi_0 - V)^{1/2} \right]$
UNIÓN LINEAL: $M = 1/3$: $Q_V = \frac{3}{2} c_{j0} \phi_0^{1/3} \left[\phi_0^{2/3} - (\phi_0 - V)^{2/3} \right]$

OBSERVAR QUE QU'SO PARA VOO: QU DA CUENTA DE LOS PORTADORES
QUE DEBEN INYECTARSE PARA NEUTRALIZAR PARTE DE LA CARGA ESPACIAL.

ANÁLOGAMENTE PARA VOO.





DISMINUCIÓN DE LA ANCHURA DE LA ZONA DE DEPLEXIÓN POR POLARIZACIÓN DIRECTA. AUMENTO DE LA ANCHURA DE LA ZONA DE DEPLEXIÓN POR POLARIZACIÓN INJERSA.

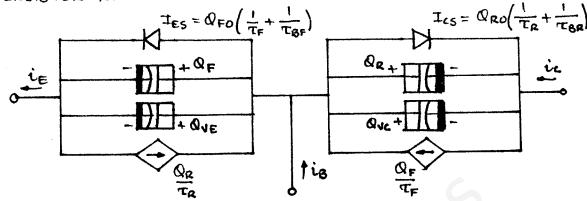
$$i_{c} = \frac{Q_{F}}{T_{F}} - O_{R} \left(\frac{1}{T_{R}} + \frac{1}{T_{BR}} \right) - \frac{dQ_{R}}{dt} - \frac{dQ_{VC}}{dt}$$

$$i_{g} = \frac{Q_{F}}{T_{BF}} + \frac{dQ_{F}}{dt} + \frac{Q_{R}}{Q_{R}} + \frac{dQ_{R}}{Q_{R}} + \frac{dQ_{VE}}{Q_{R}} + \frac{dQ_{VC}}{Q_{R}}$$

$$i_{g} = Q_{F} \left(\frac{1}{T_{F}} + \frac{1}{T_{GF}} \right) - \frac{Q_{R}}{T_{R}} + \frac{dQ_{F}}{Q_{R}} + \frac{dQ_{VE}}{Q_{R}}$$

EL CIRCUITO EQUIVALENTE DEL MODELO DE CONTROL DE CARGA ES PARA

EL TRANSISTOR NPN:



LUS CONDENSADORES NO LINEALES DAN CUENTA DE LOS ALMACENAMIENTOS
DE CARGA Y MARCAN LA DIFERENCIA RESPECTO AL MODELO DE EBERS-MOLL.

RELACION CON EL MODELO DE EBERS-MOLL (DC:
$$\frac{dQ}{dt} = 0$$
)

$$I_{CS} = Q_{RO} \left(\frac{1}{T_R} + \frac{1}{T_{SR}} \right) \qquad I_{ES} = Q_{FO} \left(\frac{1}{T_F} + \frac{1}{T_{SF}} \right)$$

$$X_R I_{CS} = \frac{Q_{RO}}{T_R} \qquad X_F I_{ES} = \frac{Q_{FO}}{T_F}$$

$$X_F = \frac{T_{SF}}{T_F + T_{SF}} \qquad X_R = \frac{T_{SR}}{T_R + T_{SR}}$$

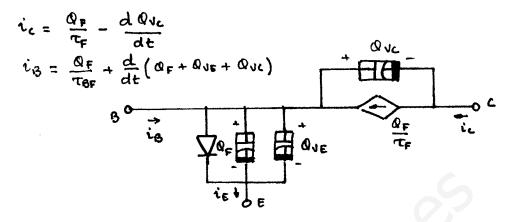
$$\beta_F = \frac{T_{SF}}{T_F} \qquad \beta_R = \frac{T_{SR}}{T_R}$$

MODELO DE CONTROL DE CARGA DE UN TRANSISTOR PND.

$$\begin{aligned}
& O_{F} = O_{FO} \left(\ell \right) & O_{R} = O_{RO} \left(\ell \right) \\
& O_{VE} = -\int_{O} C_{jE}(v) dv , \quad O_{VC} = -\int_{O} C_{jC}(v) dv \\
& i_{C} = \frac{O_{F}}{T_{F}} - O_{R} \left(\frac{1}{T_{R}} + \frac{1}{T_{GR}} \right) - \frac{dO_{R}}{dt} - \frac{dO_{VC}}{dt} \\
& i_{G} = \frac{O_{F}}{T_{GF}} + \frac{dO_{F}}{dt} + \frac{O_{R}}{T_{GR}} + \frac{dO_{R}}{dt} + \frac{d}{dt} \left(O_{VE} + O_{VC} \right) \\
& i_{E} = O_{F} \left(\frac{1}{T_{F}} + \frac{1}{T_{GF}} \right) + \frac{dO_{F}}{dt} - \frac{O_{R}}{T_{R}} + \frac{dO_{VE}}{dt} \\
& i_{C} = \frac{O_{F}}{T_{GF}} + \frac{O_{F}}{T_{GF}} +$$

REGIONES DE OPERACION (NPN)

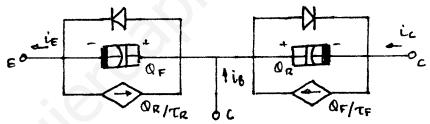
(1) ZONA ACTIVA DIRECTA : 10 F 1>> 10 R1



2 SATURACIÓN: (ONE, OUC) ~ ctes.

$$i_{\ell} = \frac{Q_{F}}{T_{F}} - Q_{R} \left(\frac{1}{T_{R}} + \frac{1}{T_{BR}} \right) - \frac{dQ_{R}}{dt}$$

$$i_{g} = \frac{Q_{F}}{T_{BF}} + \frac{Q_{R}}{T_{BR}} + \frac{d}{dt} \left(Q_{F} + Q_{R} \right)$$



3 ZOND DE CORTE : 10F, ORICCIONE, OUCI

$$i_{c} = -\frac{dQv}{dt}$$

$$i_{g} = \frac{d}{dt} (Qv_{E} + Qv_{C})$$

$$i_{g}$$

$$i_{e}$$

$$i_{e}$$

$$i_{e}$$

(4) ZONA ACTIVA IN VERSA: | OR >> | OF |

$$i_{E} = -\frac{Q_{R}}{\tau_{R}} + \frac{dQ_{JE}}{dt}$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{d}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

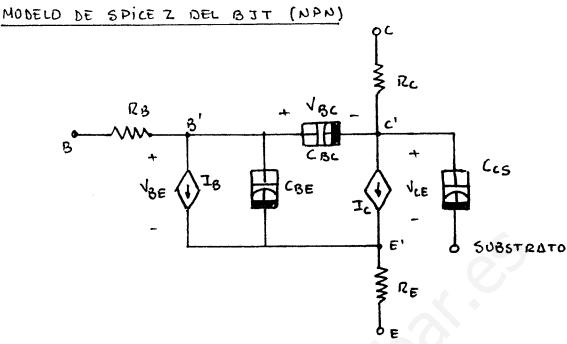
$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

)

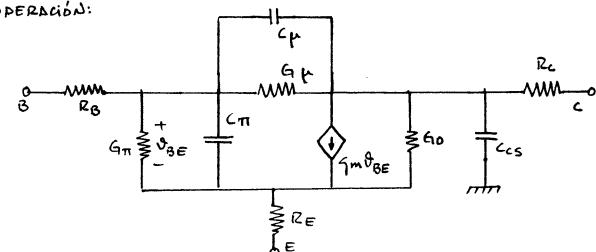


HAY CUATRO TIPOS DISTINTOS DE COMPONENTES EN EL MODELO:

- (a) COMPONENTES DE INTECCIÓN EXTRACCIÓN: IC, IB.
- (b) COMPONENTES DE ALMACENAMIENTO DE CARBO: CONDENSADORES.
- © COMPONENTES DEBIDOS A CAIDAS ÓHMICAS EN REGIONES NEU-TRAS: RB, Rc, RE.
- a componentes debidas à los aislamientos: Cls.

· EL MODERO ES DOECUDOS PARA DDICACIONES TANTO EN GRAN SEÑAL COMO EN PEQUEÑA SENAL.

DE OPERACIÓN:



DONDE:

$$G_{\pi} = \frac{\partial J_{\theta}}{\partial V_{\theta E}} |_{Q}$$

$$G_{\theta} = -\frac{\partial J_{e}}{\partial V_{\theta C}} |_{Q}$$

$$J_{m} = \frac{\partial J_{e}}{\partial V_{\theta E}} |_{Q} + \frac{\partial J_{e}}{\partial V_{\theta C}} |_{Q}$$

$$C_{\pi} = C_{\theta E} = T_{F} I_{SS} V_{e}^{IQ} \frac{V_{\theta E}^{E}}{V_{e}} + C_{fEO} \left(1 - \frac{V_{\theta E}}{\phi_{E}}\right)^{-m_{E}}$$

$$C_{\mu} = C_{\theta C} = T_{R} I_{SS} V_{e}^{IQ} \frac{V_{\theta C}}{V_{e}} + C_{fCO} \left(1 - \frac{V_{\theta C}}{\phi_{C}}\right)^{-m_{C}}$$

$$I_{56} = I_{5} \frac{Q_{6}}{Q_{50}}$$

$$Q_{8} = 45 \int p_{8} dx , Q_{80} = 45 \int N_{A} dx$$

$$W_{E}(N_{BE})$$

$$W_{E}(0)$$

WE (VOE): BORDE DE LA REGIÓN DE BASE POR EL EMISOR

Wic (VBL): BORDE DE LA REGION DE BASE POR EL COLECTOR.

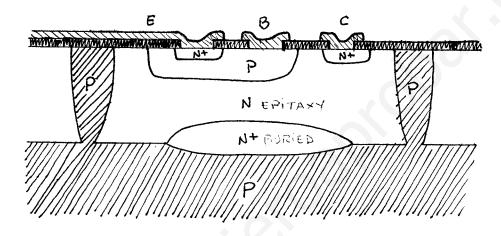
OBO : CARGA EN LA BASE BAJO POLA PIZACIÓN NULA.

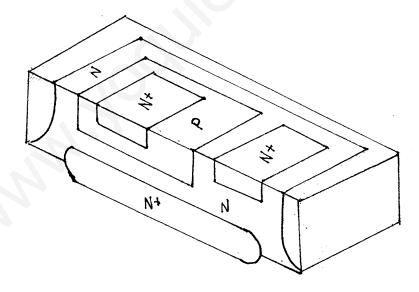
EL TRANSISTOR BIPOLAR, (BJT).

DEFINICIÓN GENÉRICA DEL TRANSISTOR BIPOLAR: "DISPOSITIVO MULTIUNIÓN
QUE EXHIBE LA ACCIÓN DE TRANSISTOR!

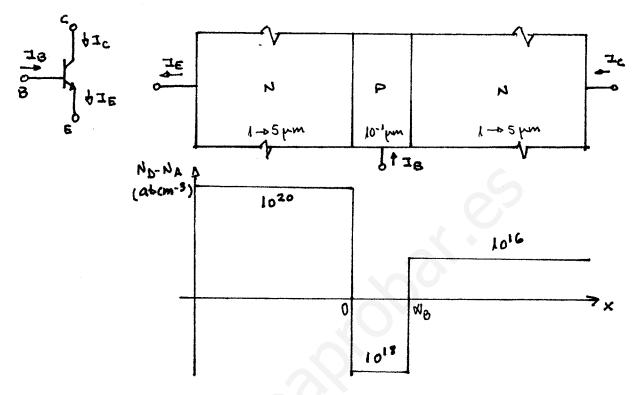
SE ENTIENDE POR ACCIÓN DE TRANSISTOR LA CAPTACIÓN DE PORTADORES MINORITARIOS PROVENIENTES DE UNA UNIÓN PN DIRECTAMENTE POLARIZADA DUE LOS EMITE, POR OTRA UNIÓN PN INVERSAMENTE POLARIZADA MUY PRÓXIMA A LA ANTERIOR.

ESTRUCTURA





LAS PROPIEDADES SIGNIFICATIVAS DEL BJT SE PUEDEN DEDUCIR
DEL TRANSISTOR PROTOTIPO: - MODELO UNIDIMENSIONAL,



CONGIDERANDO QUE SON MAYORITARIOS EN LA BASE LOS PORTADORES QUE SON MINORITARIOS EN LAS REGIONES DE EMISOR Y COLECTOR, SÓLO PUEDEN INYECTARSE A LA BASE UN FLUJO DE MAYORITARIOS EN ELLA DESPRECIABLE, LUEGO, EN LA REGIÓN DE BASE:

$$\frac{1}{1} \int_{0}^{1} \int_{0}^$$

CON LA RELACIÓN DE EINSTEIN:
$$\frac{D}{r} = \frac{\kappa \tau}{2}$$

$$\mathcal{E}_{x} = \frac{\kappa \tau}{2} \frac{1}{P} \frac{dP}{dx}$$

LUEGO, PARA LA DENSIDAD DE CORRIENTE DE ELECTRONES:

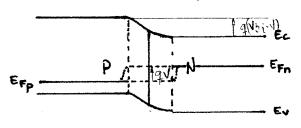
$$J_{m} = q \mu_{n} n \mathcal{E}_{x} + q D_{m} \frac{dn}{dx} = \frac{q D_{m}}{P} \frac{d(p \cdot n)}{dx}$$

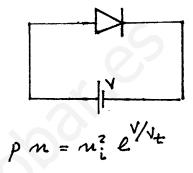
)

SI LA BASE ES ESTRECHA PUEDE EN PRIMERA APROXIMACIÓN DES PRECIARSE LA RECOMBINA-CIÓN EN ELLA, LUEGO IM = cte., Así:

$$\int_{0}^{M_{B}} J_{n} \frac{P}{q D_{n}} dx = \int_{0}^{M_{B}} d(pn) \Rightarrow J_{n} \int_{0}^{M_{B}} \frac{P}{q D_{n}} dx = P(M_{B}) n(M_{B}) - P(D) n(D)$$

RECORDANDO LA LEY DE LA UNIÓN:





$$p(w_8)n(w_8) = n_i^2 e^{V8E/V_{\pm}}$$

 $p(0)n(0) = n_i^2 e^{V8E/V_{\pm}}$

SE TIENE :

$$J_{n} = \frac{m_{i}^{2}}{\int \frac{P}{7 D_{n}} dx} \left[e^{VBC/V_{i}} - e^{VBE/V_{i}} \right]$$

SUPONIENDO DE UNA FUNCIÓN SUAVE DE LA POSICIÓN:

$$\int \frac{P}{9D_n} dx = \frac{1}{9^2 \overline{D}_n} 9 \int P dx = \frac{Q_B'}{9^2 \overline{D}_n}$$

DONDE :

POR TANTO:
$$J_{m} = \frac{q^{2} \overline{D}_{n} n_{i}^{2}}{I} \int e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2} n_{i}^{2}} \int e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2} n_{i}^{2}} e^{-\frac{\pi}{2} n_{i}^{2}} \int e^{-\frac{\pi}{2} n_{i}^{2}} e^{-\frac{\pi$$

COMO A DEMÁS ES:

$$\exists_n = \int_{S} J_n dS = J_n \int_{S} dS = J_n \cdot S \quad \left[\vec{J}_n = + J_n \vec{z} \right]$$

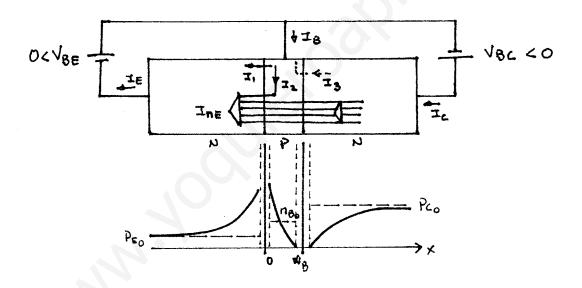
QUEDA:

$$I_n = I_S \left[e^{\frac{V_{8c}}{V_t}} - e^{\frac{V_{8b}}{V_t}} \right]$$

$$I_S = \frac{q^2 \bar{D}_n \, n_L^2 \, S}{Q_2^2}$$

REGIONES DE OPERACIÓN

1) ZONA ACTIVA DIRECTA.



· EL EMISOR INTECTA ELECTRONES A LA BASE QUE SON CAPTADOS

POR EL COLECTOR.

$$I_{c} \simeq -I_{n} (V_{BE}, -\infty) = \frac{q^{2} \overline{D}_{n} N_{L}^{2} S}{Q'_{B}} e^{\frac{V_{BE}}{V_{L}}}$$

$$I_{B} = I_{1} + I_{2} = \left[\frac{45 \text{ Dp N}_{1}^{2}}{\text{Lp NDE}} + \frac{1}{2} \frac{w_{13} + 5 \text{ NBO}}{\text{This}} \right] e^{\frac{\text{VBE}}{\text{Vt}}}$$

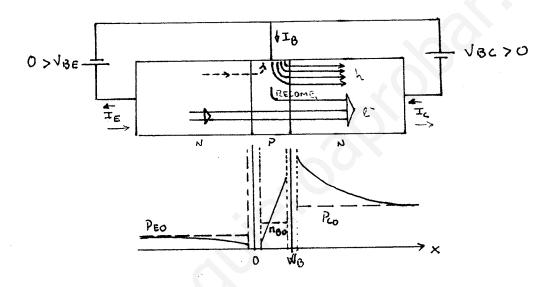
$$INTECCIÓN EN EMISOR RECOMBINACIÓN EN LA BASE$$

SE DEFINEN:

$$\beta_{F} = \frac{\exists c}{\exists B} = \frac{\lambda}{\frac{\text{WB}^{2}}{2 \, \tau_{\text{NB}} \, \overline{D}_{\text{N}}} + \frac{D p}{\overline{D}_{\text{N}}} \frac{\text{WB}}{L p} \frac{N_{\text{A}}}{N_{\text{DE}}}}$$

$$K_{F} = \frac{\exists c}{\exists E} = \frac{\lambda}{1 + \frac{\text{WB}}{2 \, \tau_{\text{NB}} \, \overline{D}_{\text{N}}} + \frac{D p}{\overline{D}_{\text{N}}} \frac{\text{WB}}{L p} \frac{N_{\text{A}}}{N_{\text{DE}}}}$$

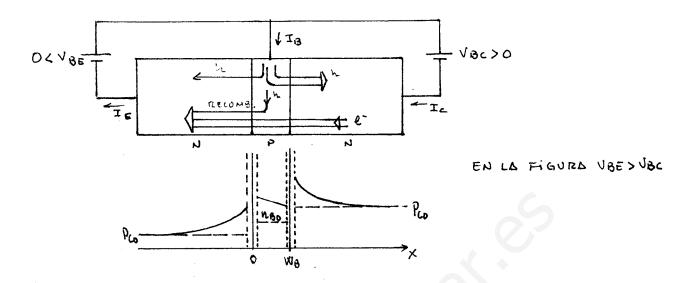
(2) ZONA ACTIVA INVERSA.



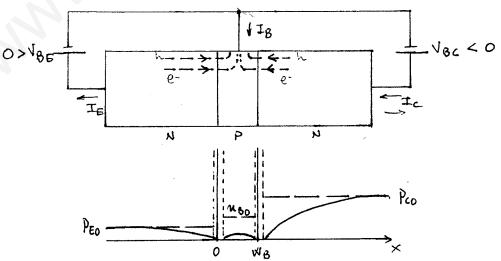
SE DEFINEN EN ESTE CASO $\alpha_R = \frac{\textbf{I}_E}{\textbf{I}_C}$ Y $\beta_R = -\frac{\textbf{I}_E}{\textbf{I}_B}$.

- EL DOPADO ASIMÉTRICO HACE QUE DOMINEN LAS CORRIENTES DE HUECOS EN LA UNIÓN BASE COLECTOR.

(3) ZONA DE SATURACIÓN.



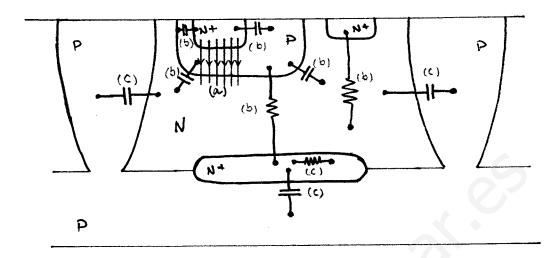
- · EL GRADIENTE DE PORTADORES MINORITARIOS EN LA BASE ES PEQUEÑO Y DIS-MINUYE LA INTENSIDAD DEBIDA A ELECTRONES CIRCULANDO ENTRE
- LA INTENSIDAD DE BASE DUMENTA POR LOS HUECOS EUMINISTRADOS A LA UNIÓN DE COLECTOR.
- · IC DEPENDE FUERTEMENTE DE VCE. IC + (3F IB
 · EXISTE UNA ZONA DIRECTA DE SATURACIÓN (VBE > VBC) Y UNA
 ZONA INVERSA DE SATURACIÓN (VBE < VBC)
- (4) ZONA DE CORTE.



EL GRADIENTE DE MINORITARIOS EN LA BASE ES CASI NULO, ASÍ, NO CIRCULA INTEN-SIDAD APRECIABLE ENTRE LAS UNIONES.

LOS N'NELES DE INTENSIDAD CORRES PONDEN A UNIONES PN INVERSAM. POLDRIZ.

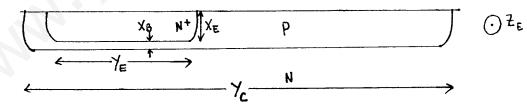
TRANSISTOR BIPOLAR INTEGRADO.



HAY QUE CON TEMPLAR TRES EFECTOS:

- · COMPORTAMIENTO INTRÍNSECO(A),
- · EFECTOS DE LOS PARÁSITOS DISTRIBUIDOS (b),
- · INFLUENCIA DE LOS DISLAMIENTOS (4).

EL COMPORTAMIENTO INTRÍNSECO PUEDE SER DESCRITO UTILIZANDO LA ESTRUCTURA PROTOTIPO (-> MODELO DE EBERS-MOLL).

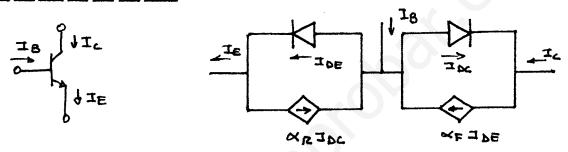


- · YE >> XE : EL AREA DEL EMISOR DEL PROTOTIPO ES S=YEZE
- · COMO LAS ECUACIONES DEL PROTOTIPO DEPENDEN DE MAGNITUDES INTEGRALES (Q'8) NO ES MUY IMPORTANTE QUE EL DOPADO SEA NO UNIFORME.

MODELO DE EBERS-MOLL

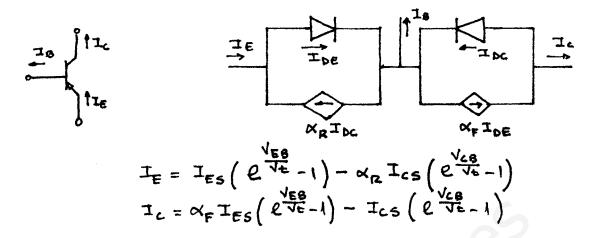
- . MODELA EN GRAN SEÑAL EL BJT.
- · DA CUENTA DE LOS FENÓMENOS DE INTECCIÓN Y EXTRACCIÓN INVOLU-CRADOS.
 - · HIPÓTESIS: INYECCIÓN DÉBIL
 - CAIDA DES PRECIABLE EN LAS REGIONES NEUTRAS.

TRANSISTOR NPW:

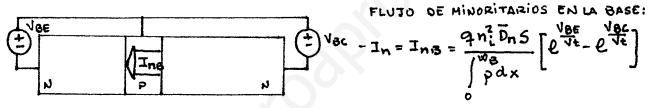


LAS CORRIENTES DE EMISOR Y COLECTOR SE DESCOMPONEN CADA UNA EN DOS CONTRIBUCIONES, UNA ES LA QUE NORMALMENTE PRODUCIRIA EN LA UNIÓN CORRESPONDIENTE POR LA POLARIZACIÓN, LA OTRA, LA MO-DELADA POR LA FUENTE CONTROLADA ES CONSECUENCIA DE LA PRESENCIA DE LA PRESENCIA DE LA PRESENCIA DE LA OTRA UNIÓN Y SE DEBE A QUE UNA PARTE DE LA CORRIENTE PRODUCIDA POR LA POLARIZACIÓN DE ESTA SECUADA UNIÓN SE TRANSPORTA ATRAVÉS DE LA BASE Y ES RECOGIDA POR LA PRIMERA UNIÓN.

TRANSISTOR PNP

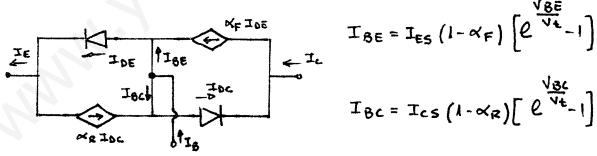


RELACIÓN ENTRE EL MODELO DE EBERS-MOLL Y LA ACCIÓN DE TRANSISTOR.



· INB ES EL TÉRMINO QUE DA LA ACCIÓN DE TRANSISTOR EN UN NPN.
POSTULADO DE RECIPROCIDAD:

COMPONENTES DE LA INTENSIDAD DE BASE:



OPERANDO EN LAS ECUACIONES DE EBERS. MOLL USANDO EL POSTULADO DE RECIPROCIDAD:

PARA OBTENER LA RELACIÓN CON LA ACCIÓN DE TRANSISTOR (Ine):

$$\alpha_{\rm p} \, I_{\rm ES} = \alpha_{\rm p} \, I_{\rm CS} = \frac{4 \, n_{\rm i} \, D_{\rm n} \, S}{\int p \, dx} \equiv I_{\rm S}$$

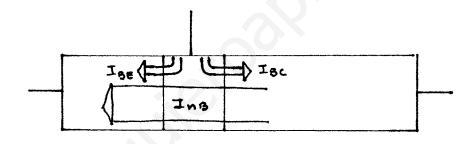
$$I_{\rm E} = I_{\rm nB} + I_{\rm BE}$$

$$I_{\rm c} = I_{\rm nB} - I_{\rm BC}$$

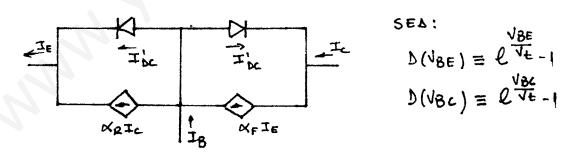
LUEGO PODEMOS CONSIDERAR:

- IBE : DÉRDIDAS POR RECOMBINACIÓN EN LA BASE Y HUECOS INYECTADOS

 DESDE LA BASE AL EMISOR.
- · IBC : PÉRDIDAS POR RECOMBINACIÓN EN LA BASE Y HUECOS INYELTADOS DESDE LA BASE AL COLECTOR.



EXPRESIONES ALTERNATIVAS DEL HODELO DE EBERS-HOLL



SE TIENE:

 $I_{ES} D(VBE) = I_E + \alpha_R I_{CS} D(VBC) , \qquad I_{CS} D(VBC) = -I_C + \alpha_F I_{ES} D(VBE)$ ASi, OPERANDO JUNTO CON EL CIRCUITO ANTERIOR:

LAS INTENSIDADES DE SATURACIÓN DE LOS DIODOS DEL MODELO SON:

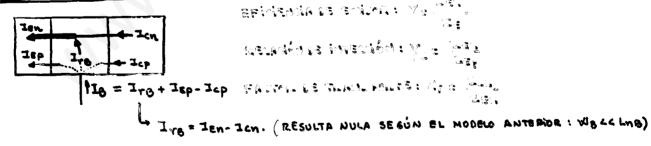
$$\frac{1}{160} + \frac{1}{160} = \frac{1}$$

$$I_{c} = -\left(I_{cp} + I_{cn}\right) = -\left(\frac{4 \text{ AE Dpc pnco}}{L_{pc}} D(NBc) + \alpha \left(-D(NBE) + D(NBc)\right)\right) = 0$$

= a D(UBE) - (a+c) D(UBC) = 1/2 = 1/

PARA METROS

Q = dR 1cs = de 1es = Is (POSTOLADO DE RECIPROCIDAD).



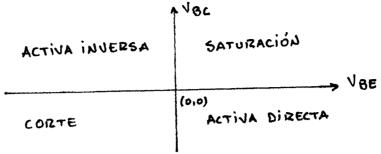
erinemia de enima e Maria.

CALCULO DE 378 : 1 EVELU ANDO LAS CORRIENTES SIN MACER USO DE LA APROX. L'ABAL : INB(O)-348(U8)

ADEMAS: IE = IESD(VBE) + or Ics; Ie = of Ies D(VBE) + Ics => Ic = of (IE- or Ies) + Ies = = df IE + (1- dpdR) Ics = df IE + ICEO - df = Ic - Iceo

EL MODELO DE EBERS-MOLL Y REGIONES DE OPERACIÓN.

SE TRATA DE HALLAR EXPRESIONES SIMPLIFICADAS PARA CADA REGIÓN
DE OPERACIÓN:



1) ZONA ACTIVA DIRECTA.

VBE > 0 : UNION BASE EMISOR DIRECTAMENTE POLARIZADA.

VBL 40: UNION BASE-COLECTOR INVERSAMENTE POLARIZADA.

SUPONIENDO 1BE > 41t, -1BC > 41t:

$$I_{c} = x_{F} I_{E} + I_{co}$$

$$I_{E} = I_{ES} \ell^{V_{BE}/V_{E}} + x_{R} I_{cs}$$

$$I_{B} \xrightarrow{\alpha_{R} I_{cs}} I_{co}$$

$$I_{E} \xrightarrow{\gamma_{R} I_{cs}} I_{co}$$

EN FUNCIÓN DE LA GANANCIA EN INTENSIDAD:

$$I_{C} = I_{B} + I_{C}$$

$$I_{C} = \frac{\kappa_{F}}{1 - \kappa_{F}} I_{B} + \frac{I_{CO}}{1 - \kappa_{F}} , \quad I_{E} = I_{ES} \ell^{VE} + \kappa_{R} I_{CS}$$
a) EN DEQUERA SERAL:
$$h_{fe} = \frac{\partial I_{C}}{\partial I_{B}} - \frac{\kappa_{F}}{1 - \kappa_{F}}$$

5) EN GRAN SENAL:
$$h_{FE} = \beta_F = \frac{1}{13} = \frac{\alpha_F}{1-\alpha_F} + \frac{1}{1-\alpha_F} = \frac{\alpha_F}{10} \approx h_{fe}$$

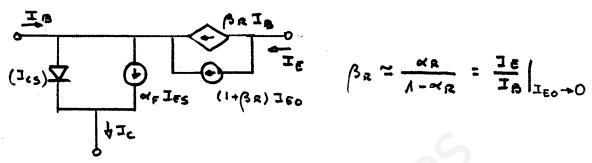
The series (1+\beta_F)1co

The series (1+\beta_F)1co

(2) ZONA ACTIVA INVERSA.

VBE CO : UNION B-E INVERSAMENTE POLARIZADA

VAL > 0 : UNION B.C DIRECTAMENTE POLDRIZADA.



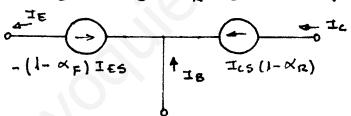
(3) ZONA DE CORTE.

UNIONES INVERSAMENTE POLARIZADAS.

)

SUPONIENDO - YBE > 4 Vt , - VBC > 4 Vt :

$$I_c = - \alpha_F I_{ES} + I_{LS} = I_{LS}(1-\alpha_R)$$



UNA APROXIMACIÓN MÁS GROSERA ES:

EN LA PRÁCTICA, DOMINAN

LAS INTENSIDADES POR FU-

GAS Y GENERACIÓN TÉRMI-

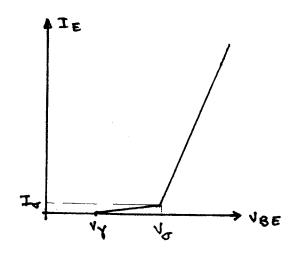
CA (DEL ORDEN DE INA).

DEFINICIÓN DE TENSIÓN DE CUTIN: ES AQUEL VALOR DE 186 QUE

SACA DE CORTE AL TRANSISTOR METI ÉNDOLO EN PONA ACTIVA DIRECTA:

D(1BC)=-1, XRICS = XFIES

Si X= ~ 1: IE ~ JES & NE _ JEO & NE SE TIENE: $I_E = I_{ES} \, \varrho^{\frac{\sqrt{8E}}{\sqrt{E}}} = \frac{I_{EO}}{I_{-} \kappa_F \kappa_R} \, \varrho^{\frac{\sqrt{8E}}{\sqrt{E}}}$ Considerar un modelo lineal a tramos:



SEA I & EL VALOR TÍDICO DE LA INTENSIDAD EN EL BORDE DE ZONA

$$I_{\gamma} = \frac{I_{\sigma}}{100}$$

Vo - Vy = Vt h 100 = 120mV

$$V_{\sigma} = V_{t} \ln \left[\frac{I\sigma}{IES} \right] \approx 0.75 \text{ V}$$

$$V_{\gamma} = V_{\sigma} - 0.12 = 0.63 \text{ V}$$

4 ZONA DE SATURACIÓN.

V8E>0

UNIONES DIRECTAMENTE POLO RIZADAS.

18C>0

- · EN SATURACIÓN :
 - LA INTENSIDAD DE COLECTOR ES MUY DEPENDIENTE DE VCE.
 - LA GANANCIA EN INTENSIDAD DISMINUYE RESPECTO A LA

ZONA ACTIVA DIRECTA: BSAT C BF.

CON EL MODELO DE EBERS-MOLL Z:

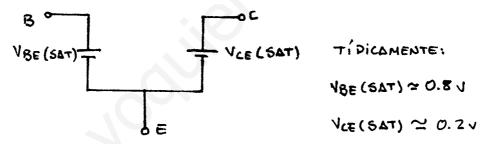
$$VBE = J_{\pm} ln \left\{ 1 + \frac{(I-\alpha_R)I_{C+IB}}{I_{EO}} \right\}$$

$$VBC = J_{\pm} ln \left\{ 1 + \frac{\kappa_F I_{B} - (I-\alpha_F)I_{C}}{I_{CO}} \right\}$$

OPERANDO CON LA PRIMERA Y DESPRECIANDO IEO:

CON LA SEGUNDA:

LUEGO UN MODELO APROXIMADO EN SATURACIÓN ES:



SE DEFINE EL SIGUIENTE PARAMETRO:

- . O = 1 : ZONA ACTIVA DIRECTA
- . Q ES UND MEDIDA DE LO PROFUNDA MENTE QUE EL TRANSISTOR EGTA EN SATURACIÓN.
- . O ALCANZARA UN VALOR MENOR EN ZONA ACTIVA INVERSA:

PARA LADA TRANSISTOR, BRY BF DADOS, PUEDE REPRESENTARSE VCE (GAT) FRENTE A & PARA CONSEGUIR UNA ESTIMACIÓN SOBRE COMO OBTENER VALORES MÍNIMOS DE VCE (SAT).

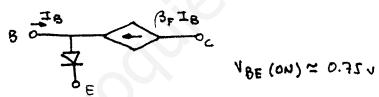
- . O SE CONTROLD POR EL CIRCUITO EXTERNO.
- . Si &>0: SATURACIÓN DIRECTA

O CO : SATURACIÓN INVERSA.

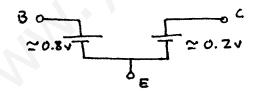
VALORES TIPICOS Y MODELOS APROXIMADOS

$$\alpha_F \simeq 0.98$$
 , $\alpha_R \simeq 0.25$

ZONA ACTIVA DIRECTA:



ZONA DE SATURACIÓN DIRECTA:



ZONA DE CORTE;

FENOMENOS DE SEGUNDO ORDEN EN EL BJT.

EN TRANSISTORES REALES, LA DESCRIPCIÓN HECHA, ES PRECISA SOBRE UN AMPLIO RANGO DE CONDICIONES PERO EN GENERAL, EXISTEN DIFERENCIAS:

- EFECTO EARLY,
- EFECTOS A POLARIZACIONES ALTAS Y BAJAS,
- RESISTENCIA DE BASE.

EFECTO EARLY.

EN EL MODELO IDEAL, LA INTENSIDAD DE COLECTOR EN ZONA ACTIVA DIREC-

Ic = x Fixe Te +

TA NO DEPENDEDE VCE:

NIC VOE

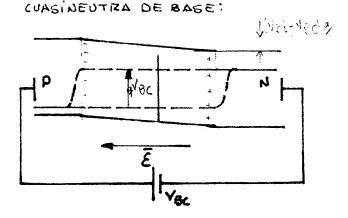
EN TRANSISTORES REALES, SIN EMBARGO: IC = f (VBE, VCE)

1 VBE

SE MODELA: $\frac{\sqrt{ge}}{\sqrt{1 + \frac{\sqrt{ce}}{\sqrt{Va}}}} \mathcal{L}^{\frac{\sqrt{Ve}}{\sqrt{Ve}}}$ (RELACIÓN EXPERIMENTAL).

EN LA PRACTICA VA SE CONSIDERA COMO EL PUNTO DE CORTE CON \underline{I}_c = 0 DE LAS PROLONGACIONES DE LAS CURJAS EN ZONA ACTIVA DIRECTA, NO NECESARIAMENTE ES FIJO PARA CADA VBE.

·EL EFECTO EARLY SE DEBE A LA MODULACIÓN DE LA ANCHURA DE LA REGION



· VBC POLDRIZACIÓN DIRECTA, DISMINUYE EL CAMPO ELÉCTRICO EN LA Z.

C.E., LA CORRIENTE DE DIFUSIÓN ES
DOMINANTE SOBRE LA DE ARRASTRE
(HUECOS HACIA LA ZONA N Y ELEC-

TRONES HACIA LA P).

· VBC < O: POLARIZACIÓN I NUERSA, <u>SUMENTO EL CARLAD ELÉCTRICOEN LA Z.C.E.</u>,

LA CORRIENTE DE ARRASTRE ES DOMINANTE SOBRE LA DE DIFUSIÓN (HUECOS HACIA

LA PONA PY EXECTIZONES HACIA LA N).

4 => DUMENTA LA ANCHURA DE LA Z.C.E. (AUMENTA LA CARGA FIJA

L=
$$\sqrt{\frac{265}{7}} \left(\frac{1}{N_D} + \frac{1}{N_A} \right) (Vbi-VBC) \propto \sqrt{Vbi+VCB}$$

L AUMENTA CON VCB.

SI AUMENTA L, DISMINUYE WB CON LO
QUE AUMENTA LA PENDIENTE DEL PERFIL
DE LA CONCENTRACIÓN DE HINORITARIOS

EN LA BASE.

EN Z.A.D.:
$$I_c \simeq I_{nB} = \frac{q n_c^2 \leq \bar{D}_n}{\sqrt{q}} e^{\sqrt{q}}$$

ADEMÁS: $I_c \propto \frac{dn}{dx}$

DEPENDENCIA CON LA LANCHORIA DE LA REGIÓN CUASIMEUTRA DE BASE.

ASÍ, UN AUMENTO DE VOB IMPLICA UN AUMENTO DE LA PENDIENTE REFERIDA Y POR TANTO UN AUMENTO DE IC.

· LA DISMINUCIÓN DE WB TIENE DOS CONSECUENCIAS:

(A) EL GRADIENTE DE LA CONCENTRACIÓN DE PORTABORES MINORITARIOS EN LA BASE ES MAYOR Y DORTANTO AUMENTA LA CORRIENTE DE MINORITARIOS INYECTADA, DEL AREA BAJO LA CURUA ES MENOR, LUEGO LA CORRIENTE DE DÉRDIDAS POR RECOMBINACIÓN EN LA BASE DISMINUYE (IB DISMINU-YE) Y POR TANTO AUMENTA IC.

AMBOS FACTORES CONTRIBUYEN A UN DUMENTO DE LA INTENSIDAD DE COLECTOR.

OPERANDO:

$$\frac{\partial I_{c}}{\partial V_{cE}} = \frac{\partial I_{c}}{\partial V_{cB}} \Big|_{V_{BE} = cte.} = \frac{q n_{c}^{2} S \bar{O}_{n} P(W_{B})}{\left[\int_{0}^{W_{B}} \rho dx\right]^{2}} \frac{V_{BE}^{3E}}{\partial V_{cB}}$$

DEFINIR:

$$V_{A} = \frac{\int \rho \, dx}{\rho(W_{8}) \frac{\partial W_{8}}{\partial V_{C8}}} \angle O \quad (W_{8} \text{ bisminuye si VC8 CRECE}).$$

ASi:

)

REDEFINIENDO Ic:

OBSERVAR QUE:

go =
$$\frac{\partial I_c}{\partial V_{CE}} = 0$$
 (CASO IDEAL)

- · VA SUELE CONSIDERARSE CONSTANTE,
- · EL EFECTO EARLY ES IMPORTANTE EN CIRCUITOS ANALÓGICOS,
- DE BASE, PERO SE DISMINUYE IS.

INTENSIDADES PARA POLARIZACIONES DEBILES

RECORDEMOS LAS EXPRESIONES DE IB E IC EN EL CASO IDEALPARA
ZONA ACTIVA DIRECTA:

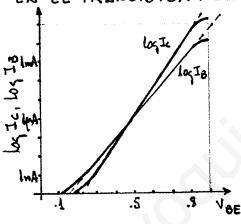
$$I_{C} = \alpha_{F} I_{ES} e^{\frac{\sqrt{6E}}{\sqrt{E}}}$$

$$I_{B} = I_{E} - I_{C} = I_{ES} e^{\frac{\sqrt{6E}}{\sqrt{E}}} - \alpha_{F} I_{ES} e^{\frac{\sqrt{6E}}{\sqrt{E}}} = (1 - \alpha_{F}) I_{ES} e^{\frac{\sqrt{6E}}{\sqrt{E}}}$$

OPERANDO:

AL REPRESENTARLAS, AMBAS SERÍAN RECTAS.

EN EL TRANSISTOR REAL:



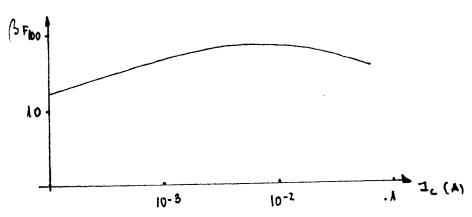
- · Ic SEAJUSTA BASTANTE BIEN EN
 TODO RANGO.
- A BAJAS POLARIZACIONES IB SE AJUSTA

 MEJOR A: IB = IO P ZVL,

ESTO ES PORQUE PARA VALORES PEQUE EN IB NOS DE VIBE DOMINA LA CORRIENTE DE

RECOMBINACIÓN EN LA ZONA DE CARGA ESPACIAL, J. NO SE VE AFECTADA PORQUE ESTA CORRIENTE NO ES COLECTADA AL COLECTOR.

ESTO HACE QUE $G_F = \frac{I_c}{I_B}$ NO SEA CONSTANTE EN ZONA ACTIVA DIRECTA:



INVECCIÓN DE ALTO NIVEL

SI LA INTECCIÓN DE PORTADORES MINORITARIOS EN LA BASE ES
ELEVADA, NO PUEDE SUPONERSE QUE LA DISTRIBUCIÓN DE MAYORITARIOS ES LA DE EQUILIBRID TERMILD.

RECORDAR QUE LA EXPRESIÓN DE IL EN ZONA ALTIVA DIRECTA CUAN DO SE DESPRECIA LA RECOMBINACIÓN EN LA BASE ES:

$$\exists c = \exists ns = \frac{3^2 n_i^2 s \, \overline{D} n}{Q_a^2} \, e^{\frac{VBE}{VE}}$$

OVE DEPENDE DE LA CARGA INTEGRAL:

$$O_8' = 9 \int_0^{\sqrt{8}} P_8(x) dx$$

EN INYECCIÓN DÉBIL:

SI NO ES ASÍ NOTAMOS QUE:

- CUASINEUTRALIDAD DE LA BASE: $p_{B}(x) = N_{AB}(x) + m_{B}(x)$ (CON $n_{B}(x)$ LOS MINORITARIOS).

WEGO:

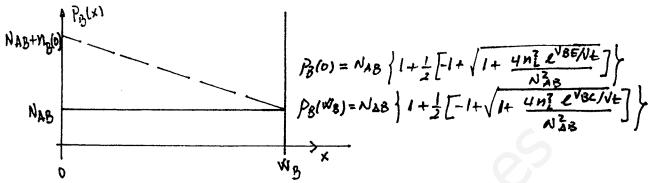
$$m_{g(x)} \left[N_{AB}(x) + n_{g(x)} \right] = n_{i}^{2} e^{\frac{V(x)}{V+}} \Rightarrow n_{g(x)}^{2} + n_{g(x)} + n_{g(x)} \cdot n_{g(x)} - n_{i}^{2} e^{\frac{V(x)}{V+}} = 0 \Rightarrow$$

$$\gg M_8(x) = \frac{N_{AB}(x)}{Z} \left[-1 + \sqrt{1 - \frac{4 n_1^2 \ell^{V(x)} J_E}{N_{AB}^2(x)}} \right]$$

CON LO ONE:

$$P_{B}(x) = N_{AB}(x) \left\{ 1 + \frac{1}{2} \left[-1 + \sqrt{1 - \frac{4n_{i}^{2} e^{\sqrt{ix}}}{N_{AB}^{2}(x)}} \right] \right\}$$

PARA OBTENER UNA EXPRESIÓN SUPONER DOPADO UNIFORME, DESPRE CIAR LA RECOMBINACIÓN EN LA BASE, ES DECIR, SUPONER OUE LA DISTIZIBUCIÓN DE MINDRITARIOS ES LINEAL:



LA DISTRIBUCIÓN DE MINORITORIOS ES:
$$\rho_{B}(x) = -\frac{n_{i}^{2} e^{\frac{\sqrt{BE}}{2\sqrt{L}}}}{W_{B}} \times + n_{i} e^{\frac{\sqrt{BE}}{2\sqrt{L}}} + N_{AB}$$

INTEGRANDO:

$$Q'_8 = 4 \left\{ \frac{n! e^{\frac{\sqrt{8E}}{2\sqrt{L}}}}{2} W_8 + N_{AB} W_8 \right\}$$

Si VBE ES LO SUFICIENTEMENTE GRANDE:

CON LO QUE:

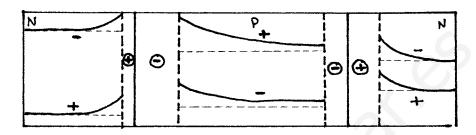
RESISTENCIA DE BASE

DADO QUE LA REGION DE BASE ES MUY ESTRECHA LA RESISTENCIA ASD CIADA DUEDE SER IMPORTANTE: R = P => RT SI A +

ALMACENAMIENTO DE CARGA EN TRANSISTORES BIPOLARES.

EN UN BIT PUEDEN ALMACENARSE DOS FORMAS DE CARGA:

- CARGAS ASOCIADAS A PORTADORES INTECTADOS EN LAS REGIONES NEUTRAS.
- CARBAS ASDCIABAS A LAS ZONAS DE CARBA ESPACIAL.



AMBOS TIPOS DE CARGA GON CONTROLA BLES POR LAS TENSIONES EXTERNAS:

- PORTADORES INTECTADOS :

BASADOS EN EL SIGUIENTE CÁLCULO EN BAJA INTECCIÓN:

$$n(0) = meq + \Delta n(0) \Rightarrow \Delta n(0) = n(0) - neq , n(0) = \frac{n^2}{p(0)} e^{\frac{NBE}{1+2}} \approx \frac{n^2}{NA} e^{\frac{NBE}{1+2}} = neq e^{\frac{NBE}{1+2}} \Rightarrow \Delta n(0) = neq \left(\frac{exp(Ne)}{1+2} - 1\right)$$
SE DEFINEN:

DONDE OFO Y ORO SON FONCIONES DE LA GEOMETRÍA Y DE LOS PERFILES DE DOPADO.

- CARGAS EN LA Z.C.E.: SE CALCULAN ASOCIADAS A CAPACITORES DE UNIÓN

$$Q_{DE}(VBE) = -C_{jEO} \int_{0}^{\sqrt{BE}} \left(1 - \frac{\sqrt{V}}{\phi_{E}}\right)^{-m_{E}} dV + Q_{DE}(0)$$

$$Q_{DC}(VBC) = -C_{jCO} \int_{0}^{\sqrt{BC}} \left(1 - \frac{\sqrt{V}}{\phi_{C}}\right)^{-m_{C}} dV + Q_{DC}(0)$$

LAS CARGAS ESTÁN RELACIONADAS CON LAS INTENSIDADES DEL TRAN-SISTOR:

- EN RÉGIMEN ESTÀTICO LA INTENSIDAD DE PORTADORES MINO-RITARIOS EN LA BASE DEPENDE DE LA CARGA EXCEDENTE EN DICHOS PORTADORES.
- EN RÉGIMEN DINÁMICO HAY QUE SUMINISTRAR LA INTEN-SIDAD NECESARIA PARA ALTERAR LAS CARGAS ALMACENA DAS TANTO DE INVECCIÓN COMO DE DEPLEXIÓN

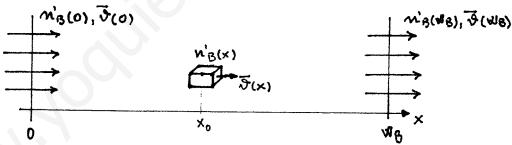
TIEMPO DE TRANSITO EN LA BASE : RÉGIMEN ESTÁTICO

EN RELACIÓN CON LA ACCIÓN DE TRANSISTOR, LOS PORTADORES

MINORITARIOS EN LA BASE SON INYECTADOS POR EL EMISOR, ATRAVIE

SAN LA BASE Y SON EXTRAIDOS POR EL COLECTOR.

; SE INVIERTE CIERTO TIEMPO EN ATRAVESAR LA REGIÓN DE BASE!



LA INTENSIDAD DE PORTADORES MINORITARIOS CIRCULANDO POR LA BASE ES PROPORCIONAL A LA CARGA DE DIFUSIÓN DE MINORITARIOS EN DICHA REGIÓN.

$$\overline{J}_{NB}(x) = -q n'_{B}(x) \vartheta(x) \overline{\lambda} \Rightarrow 0$$

$$\Rightarrow \int \overline{J}_{NB}(x) dx = -q \int n'_{B}(x) \vartheta(x) dx$$

SUPONIENDO DESPRECIABLE LA RECOMBINACIÓN EN LA BASE (JNB (x) = cte)

Y QUE LA JELOGIDAD ES UNA FUNCIÓN SUAVE DE LA POSICIÓN:

$$J_{NB} \cdot W_{8} = -q \tilde{v} \int_{0}^{W_{8}} m_{8}(x) dx$$

CON T VELOCIDAD PROMEDIO

RECORDANDO IC = - Ing. &

$$I_c = \frac{45}{(\frac{\sqrt{8}}{3})} \int_0^{\sqrt{8}} n_{\beta}(x) dx = \frac{Q_B}{T_B}$$

• ∫ M'B dx : CARGA POR UNIDAD DE SUPERFÍCIE ASOCIADA A LOS POR

TADORES MINORITARIOS ÎN YECTADOS

SITO PROMEDIO EN ATRAVESAR LA BASE.

 $.0_8 = 95 \int_{n_8'(x)}^{w_8} (x) dx > 0$: CARGA ASOCIADA A LOS PORTADO-

POR OTRO LADO:

$$T_{C} = \frac{95 n_{L}^{2} \overline{D}_{n}}{\int_{\mathcal{B}}^{W_{B}} P_{B}(x) dx} = \frac{95 \int_{0}^{W_{B}} n_{B}^{2}(x) dx}{T_{B}}$$

WEGO:

$$T_{B} = \frac{95 n_{L}^{2} \overline{D}_{n}}{\int_{0}^{W_{B}} p_{B}(x) dx} = \frac{95 \int_{0}^{W_{B}} n_{B}^{2}(x) dx}{T_{B}}$$

$$T_{B} = \frac{95 n_{L}^{2} \overline{D}_{n}}{\int_{0}^{W_{B}} p_{B}(x) dx} = \frac{95 \int_{0}^{W_{B}} n_{B}^{2}(x) dx}{T_{B}}$$

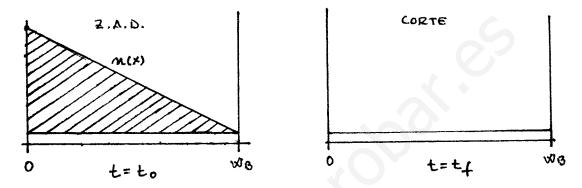
PARA EL TRANSISTOR PROTOTIPO EN BAJA INTECCIÓN: N_{B} N_{B}

 $\mathcal{T}_{\mathcal{B}} = \frac{n_{\mathcal{B}0} \, N_{AB} \, \mathcal{W}_{\mathcal{B}}^{2}}{2 \, n_{\tilde{c}}^{2} \, \overline{D}_{n}} = \frac{\mathcal{W}_{\mathcal{B}}^{2}}{2 \, \overline{D}_{n}} \quad \text{DUES} \quad n_{\mathcal{B}0} \, N_{AB} = n_{\tilde{c}}^{2}$ $\forall A \, \text{QUE} \, N_{AB} \simeq \rho_{\mathcal{B}0}$

MODELO DE CONTROL DE CARGA

EN RÉGIMEN DINÀMICO, LA CARGA ALMACENADA EN LAS DISTINTAS REGIONES DE UN TRANSISTOR CAMBIA :

IMAGINAR UNA TRANSICIÓN DE ZONA ACTIVA DIRECTA A CORTE; EN LA REGIÓN NEUTRA DE BASE HA Y QUE DESALOJAR CIERTA CANTIDAD DE CARGA;



HAY QUE DEGALOJAR DE LA BASE TODA LA CARGA RAMDA.

EL DESDLOJO DE CARGO NO PUEDE HACERSE INSTANTANEAMENTE, NECESI-

- RESOLVIENDO LA ECUACIÓN DE CONTINUIDAD EN DERIVADAS

 PARCIALES (- MODELO DISTIZIBUIDO),
- * APLICAR UN MODELO CUASIESTÁTICO QUE EXPRESE LA EVOLU-CIÓN COMO UNA SECUENCIA DE SITUACIONES ESTÁTICAS,
 - APLICAR UN MODELO LI NEAL A TRAMOS USANDO CONDENSADORES PROMEDIO.

EL MODELO DE CONTROL DE CARGA ES UN MODELO CUASIESTÁTICO:
"LA VELOCIDAD DE VARIACIÓN DE TENSIONES E INTENSIDADES ES
SUFICIENTEMENTE PEQUEÑA COMO PARA QUE LA DISTRIBUCIÓN
DE CARGA EN LAS DISTINTAS REGIONES SEA UNA SECUENCIA
DE DISTRIBUCIONES ESTÁTICAS".

to to

PARA INTERVALOS TEMPORALES DEL ORDEN DEL TIEMPO DE TRÁNSITO EN LA BASE LA APROXIMACIÓN CUASIESTATICA DA LUGAR A ERRORES.

VALIDEZ: At >> TB.

OBJETIJO BÁSICODEL MODELO DE CONTROL DE CARGO:

- EXPRESAR TODAS LAS INTENSIDADES TERMINALES EN FUN CIÓN DE CARGAS ALMACENADAS EN EL TRANSISTOR.

$$i_{g} = \int_{B} \left[Q_{F}, Q_{R}, Q_{VC}, Q_{VE} \right]$$

$$i_{c} = \int_{C} \left[Q_{F}, Q_{R}, Q_{VC}, Q_{VE} \right]$$

SIENDO:

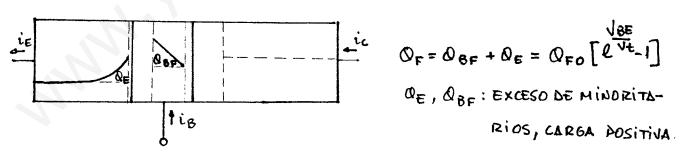
 $O_{VC} = O_{DC}(O) - O_{DC}(VBC)$, $O_{VE} = O_{DE}(O) - O_{DE}(VBE)$

OCORRIENTE ASOCIADA A LAS CARGAS DE INTECCIÓN

LAS CARGAS DE INTECCIÓN SE DESCOMPONEN EN DOS COMPONENTES:

- LAS ASOCIADAS A LA UNIÓN BASE-EMISOR,
- LAS ASOCIADAS A LA UNIÓN BASE-COLECTOR.

@ UNIÓN BASE-EMISOR:



UTILIZANDO LA APIZOXIMACIÓN CUASIESTÁTICA:

$$i_c = \frac{Q_F}{\tau_E}$$

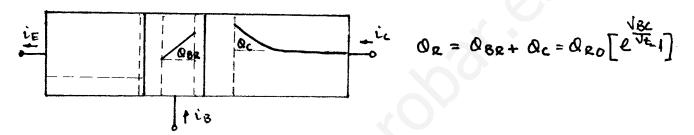
SIENDO TE UNA EXTENSIÓN DEL CONCEPTO DE TIEMPO DE TRÁN-SITO EN LABASE (TE > TB). LA CORRIENTE DE BASE DA CUENTA DE LOS TÉRMINOS ESTACIONA RÍOS Y DE LOS CAMBIOS TEMPORALES EN QF:

$$rig = \frac{Q_F}{\tau_{BF}} + \frac{dQ_F}{dt}$$

LUE GO:

$$i_E = i_C + i_B = O_F \left(\frac{1}{\tau_F} + \frac{1}{\tau_{BF}} \right) + \frac{dQ_F}{dt}$$

6 UNION BASE COLECTOR:



ANALOGAMENTE AL CASO ANTERIOR:

$$i_{B} = \frac{Q_{F}}{\tau_{BF}} + \frac{dQ_{F}}{dt} + \frac{Q_{R}}{\tau_{BR}} + \frac{dQ_{R}}{dt}$$

$$i_{C} = \frac{Q_{F}}{\tau_{F}} - Q_{R} \left(\frac{1}{\tau_{R}} + \frac{1}{\tau_{BR}} \right) - \frac{dQ_{R}}{dt}$$

$$i_{E} = Q_{F} \left(\frac{1}{\tau_{C}} + \frac{1}{\tau_{RF}} \right) + \frac{dQ_{F}}{dt} - \frac{Q_{R}}{\tau_{C}}$$

DE NUEVO TR ES UNA EXTENSIÓN DEL CONCEPTO DE TIEMPO DE TIZÁNSITO EN LA BASE.

· TF, TBF, TR, TBR PUEDEN DBTENERSE MEDIANTE TEC-NICAS EXPERIMENTALES.

2 CORRIENTE ASOCIADA A LAS CARGAS ESPACIALES

ES LA QUE CIRCULA POR LOS TERMINALES PARA CAMBIAR QUE Y QUE:

$$Q_{v} = Q_{0}(0) - Q_{0}(v) = C_{j0} \int_{0}^{v} (1 - \frac{\xi}{\phi_{0}})^{-m} d\xi =$$

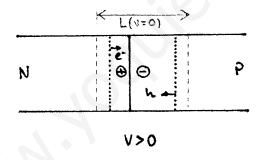
$$Q_{V} = \frac{c_{jo}}{1-m} \phi_{o} - \frac{c_{jo}}{1-m} \phi_{o}^{m} (\phi_{o} - V)^{1-m}$$

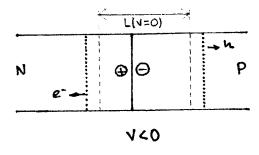
DONDE Cjo ES LA CAPACIDAD DE LA UNIÓN A POLARIZACIÓN NULA Y MEL PARA:

UNIÓN ABRUPTA:
$$M = 1/2$$
: $Q_V = 2 c_{j0} \phi_0^{1/2} \left[\phi_0^{1/2} - (\phi_0 - V)^{1/2} \right]$
UNIÓN LINEAL: $M = 1/3$: $Q_V = \frac{3}{2} c_{j0} \phi_0^{1/3} \left[\phi_0^{2/3} - (\phi_0 - V)^{2/3} \right]$

OBSERVAR QUE QU'SO PARA VOO: QU DA CUENTA DE LOS PORTADORES
QUE DEBEN INYECTARSE PARA NEUTRALIZAR PARTE DE LA CARGA ESPACIAL.

ANÁLOGAMENTE PARA VOO.





DISMINUCIÓN DE LA ANCHURA DE LA ZONA DE DEPLEXIÓN POR POLARIZACIÓN DIRECTA. AUMENTO DE LA ANCHURA DE LA ZONA DE DEPLEXIÓN POR POLARIZACIÓN INJERSA.

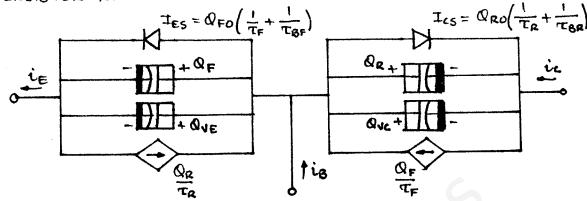
$$i_{c} = \frac{Q_{F}}{T_{F}} - O_{R} \left(\frac{1}{T_{R}} + \frac{1}{T_{BR}} \right) - \frac{dQ_{R}}{dt} - \frac{dQ_{VC}}{dt}$$

$$i_{g} = \frac{Q_{F}}{T_{BF}} + \frac{dQ_{F}}{dt} + \frac{Q_{R}}{Q_{R}} + \frac{dQ_{R}}{Q_{R}} + \frac{dQ_{VE}}{Q_{R}} + \frac{dQ_{VC}}{Q_{R}}$$

$$i_{g} = Q_{F} \left(\frac{1}{T_{F}} + \frac{1}{T_{GF}} \right) - \frac{Q_{R}}{T_{R}} + \frac{dQ_{F}}{Q_{R}} + \frac{dQ_{VE}}{Q_{R}}$$

EL CIRCUITO EQUIVALENTE DEL MODELO DE CONTROL DE CARGA ES PARA

EL TRANSISTOR NPN:



LUS CONDENSADORES NO LINEALES DAN CUENTA DE LOS ALMACENAMIENTOS
DE CARGA Y MARCAN LA DIFERENCIA RESPECTO AL MODELO DE EBERS-MOLL.

RELACION CON EL MODELO DE EBERS-MOLL (DC:
$$\frac{dQ}{dt} = 0$$
)

$$I_{CS} = Q_{RO} \left(\frac{1}{T_R} + \frac{1}{T_{SR}} \right) \qquad I_{ES} = Q_{FO} \left(\frac{1}{T_F} + \frac{1}{T_{SF}} \right)$$

$$X_R I_{CS} = \frac{Q_{RO}}{T_R} \qquad X_F I_{ES} = \frac{Q_{FO}}{T_F}$$

$$X_F = \frac{T_{SF}}{T_F + T_{SF}} \qquad X_R = \frac{T_{SR}}{T_R + T_{SR}}$$

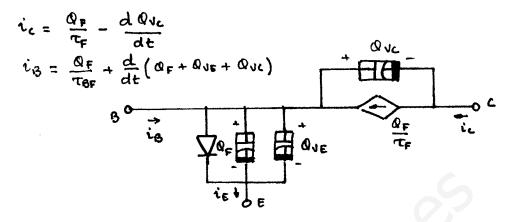
$$\beta_F = \frac{T_{SF}}{T_F} \qquad \beta_R = \frac{T_{SR}}{T_R}$$

MODELO DE CONTROL DE CARGA DE UN TRANSISTOR PND.

$$\begin{aligned}
& O_{F} = O_{FO} \left(\ell \right) & O_{R} = O_{RO} \left(\ell \right) \\
& O_{VE} = -\int_{O} C_{jE}(v) dv , \quad O_{VC} = -\int_{O} C_{jC}(v) dv \\
& i_{C} = \frac{O_{F}}{T_{F}} - O_{R} \left(\frac{1}{T_{R}} + \frac{1}{T_{GR}} \right) - \frac{dO_{R}}{dt} - \frac{dO_{VC}}{dt} \\
& i_{G} = \frac{O_{F}}{T_{GF}} + \frac{dO_{F}}{dt} + \frac{O_{R}}{T_{GR}} + \frac{dO_{R}}{dt} + \frac{d}{dt} \left(O_{VE} + O_{VC} \right) \\
& i_{E} = O_{F} \left(\frac{1}{T_{F}} + \frac{1}{T_{GF}} \right) + \frac{dO_{F}}{dt} - \frac{O_{R}}{T_{R}} + \frac{dO_{VE}}{dt} \\
& i_{C} = \frac{O_{F}}{T_{GF}} + \frac{O_{F}}{T_{GF}} +$$

REGIONES DE OPERACION (NPN)

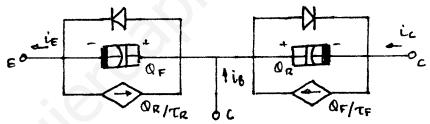
(1) ZONA ACTIVA DIRECTA : 10 F 1>> 10 R1



② SATURACIÓN: (ONE, OUC) ~ ctes.

$$i_{\ell} = \frac{Q_{F}}{T_{F}} - Q_{R} \left(\frac{1}{T_{R}} + \frac{1}{T_{BR}} \right) - \frac{dQ_{R}}{dt}$$

$$i_{g} = \frac{Q_{F}}{T_{BF}} + \frac{Q_{R}}{T_{BR}} + \frac{d}{dt} \left(Q_{F} + Q_{R} \right)$$



3 ZOND DE CORTE : 10F, ORICCIONE, OUCI

$$i_{c} = -\frac{dQv}{dt}$$

$$i_{g} = \frac{d}{dt} (Qv_{E} + Qv_{C})$$

$$i_{g}$$

$$i_{e}$$

$$i_{e}$$

$$i_{e}$$

(4) ZONA ACTIVA IN VERSA: |OR >> |OF

$$i_{E} = -\frac{Q_{R}}{\tau_{R}} + \frac{dQ_{JE}}{dt}$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{d}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

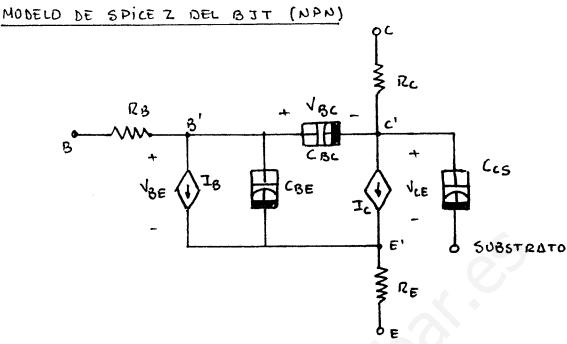
$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

$$i_{g} = \frac{Q_{R}}{\tau_{gR}} + \frac{dQ_{JE}}{dt} \left(Q_{R} + Q_{JE} + Q_{JC}\right)$$

)

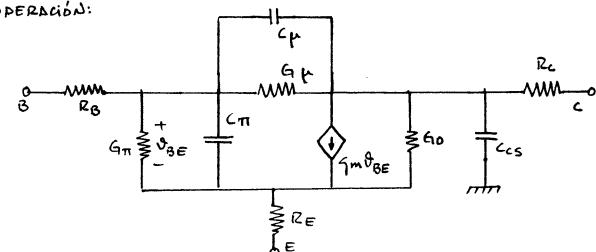


HAY CUATRO TIPOS DISTINTOS DE COMPONENTES EN EL MODELO:

- (a) COMPONENTES DE INTECCIÓN EXTRACCIÓN : IC, IB.
- (b) COMPONENTES DE ALMACENAMIENTO DE CARBO: CONDENSADORES.
- © COMPONENTES DEBIDOS A CAIDAS ÓHMICAS EN REGIONES NEU-TRAS: RB, Rc, RE.
- a componentes debidas à los aislamientos: Cls.

· EL MODERO ES DOECUDOS PARA DDICACIONES TANTO EN GRAN SEÑAL COMO EN PEQUEÑA SENAL.

DE OPERACIÓN:



DONDE:

$$G_{\pi} = \frac{\partial J_{\theta}}{\partial V_{\theta E}} |_{Q}$$

$$G_{\theta} = -\frac{\partial J_{e}}{\partial V_{\theta C}} |_{Q}$$

$$J_{m} = \frac{\partial J_{e}}{\partial V_{\theta E}} |_{Q} + \frac{\partial J_{e}}{\partial V_{\theta C}} |_{Q}$$

$$C_{\pi} = C_{\theta E} = T_{F} I_{SS} V_{e}^{IQ} \frac{V_{\theta E}^{E}}{V_{e}} + C_{fEO} \left(1 - \frac{V_{\theta E}}{\phi_{E}}\right)^{-m_{E}}$$

$$C_{\mu} = C_{\theta C} = T_{R} I_{SS} V_{e}^{IQ} \frac{V_{\theta C}}{V_{e}} + C_{fCO} \left(1 - \frac{V_{\theta C}}{\phi_{C}}\right)^{-m_{C}}$$

$$I_{56} = I_{5} \frac{Q_{6}}{Q_{50}}$$

$$Q_{8} = 45 \int p_{8} dx , Q_{80} = 45 \int N_{A} dx$$

$$W_{E}(N_{BE})$$

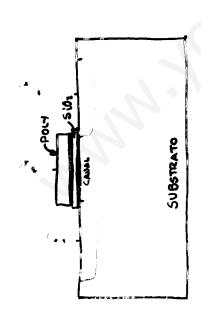
$$W_{E}(0)$$

WE (VOE): BORDE DE LA REGIÓN DE BASE POR EL EMISOR

WC (VBC): BORDE DE LA REGION DE BASE POR EL COLECTOR.

OBO : CARGA EN LA BASE BAJO POLA PIZACIÓN NULA.

ESTRUCTURA



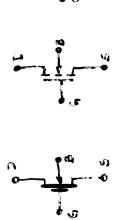
VALORES TÍPICOS:

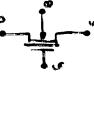
ESPESOR ÓXIDO DE CAMPO ~ 1 pm WE[2, 500] HM Port out I'm GEONÉTRICOS LE[U.S., 100] pm

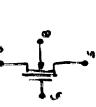
tox ~ 400 \$; PROFONDADAB CAJONES DIFUSION ~ 0.5 pm; ESPESOR SUBSTRATO ~ 500 pm

NSUB E [1014, 1016] CM-B • DE DOPADO

SIMBOLOS (NMOS)



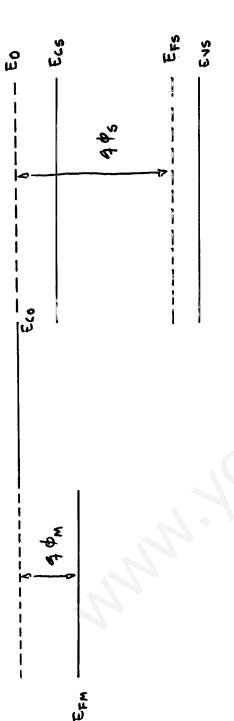




STACE BUILDING

DIAGRAMA DE BANDAS DE LA ESTRUCTURA MOS

MATRERIALES MISLADOS:



• AL SITUAR LOS MATGRÍALES EN CONTACTO, LA TENDEGIA AL GOUILIBAD SUPONDRÀ LA CARGA + SE ALOJA EN LA PUERTA 7 LA TRANSFERENCIA DE CARGA:

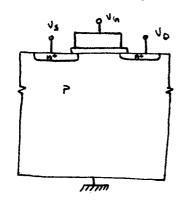
φ > φ

. . . .

\$ < \$m LA INVERSA. Z *

- EN EL SUBSTRATO. POTENCIAL DE CONTACTO POSITIVO.

BUG SIGUE SE ASUME &> &M. · EN 10 PRINCIPIO DE OPERACIÓN : NHOS.



- i) SUPONER VB =0, VS=0
 - · VA = 0 : DOS UNIONES PIN ENTRENTADAS, NO PUEDE HABEL PUED NETO DE PORTAGORES DUTRE S 7 D.
 - " VA > 0: APARECEN CARBAS POSITIVAS EN LA BATE
 OUE INDUCEN CARBAS NEBATIVAS EN LA SUPERFICIE
 OFC SILICO.
 - · VA>> 0: LAS CARGAS INDOCIONS EN LA SUP. DEL SI

SON PORTADORES LIBRES. ESTOS PUEDEN MOVERSE SI SE HACE VAS \$ 0.

DESCRIPCIÓN CUALITATIVA DEL PUNCIONA MIENTO: NMOS.

DEFINICIÓN: "TENSIÓN DE UMBRAL" ES LA MINIMA TENSIÓN (UT) OUE APLICADA AL TERMINAL DE GIATE (PUERTA) INDUCE PORTADORES LIBRES EN EL CANAL.

EN PUNCIÓN DE SIGNO DE UT SE DISTINGUEN DOS TIPOS DE TTORES. NIMOS:

- · NMOS DE EMPOBRECIMIENTO (UT <0) : HAY PORTADORES (IBAES EN EL CANM. PARA TENSIONES DE PUERTO BAJAS (HASTA PORA TENSIONES DE PUERTO BAJAS (HASTA PORA TENSIONES DE PUERTO BAJAS)
- · NHOS OF ENRIQUECIMIENTO (UT>O): NO HAY PORTA OURES LIBRES EN EL CANAL SI LA TENSION OF PUERTA ES BAJA.

iil SUPONER NS = 0 , NG = NGS , Ng = NAS

- · A MEDIDA QUE DO MENTA VAS DESDE Ø SE CIREN UNA REGIÓN DE CARAN ESPACIAL BATO LA POERTA.
- . CUANDO SE HACE VAS > VT SE CRED EL CANAL.
- . OND UTZ CREADO EL CANAL, UNA RELACIÓN APROXIMADA ES:

" ESTA CARGO CIRCULA ENTRE DRENABOR Y FUENTE GRACIAS A VOS :

$$I_{SS} = \frac{IQI}{\tau} \quad (ON \quad \tau = \frac{L}{3} = \frac{L}{\mu E} = \frac{L^2}{\mu J_{SS}} \quad (2)$$

$$\Delta s \dot{s} : \quad \Delta s = \frac{101}{\tau} \simeq \mu \frac{\epsilon}{\tau_{Dx}} \frac{\forall l}{l} (16s - 17) \log \qquad (3)$$

· LO APROX. ES SÓLO VÁCIDA PARA VOS PEQUEÑO. SÍ VOS AUMENTA POR ENCIMA DE MOS. VII SE PRODUCE SATURACIÓN:

$$I_{DS} \simeq \mu \frac{\epsilon}{t_{Dx}} \frac{1}{z} \frac{kl}{l} (V_{RS} - V_T)^2$$
 (U)

· LOS TTORES. PMUS TIENEN EL MISMO PRINCIPIO DE OPERACIÓN CAMBIANDO LA TENSIÓN.

DE PUERTA.

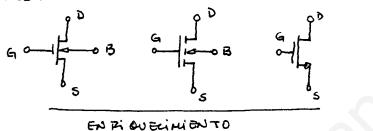
9.21- ASPECTOS PEWLIARES DEL TRANSISTOR MOS:

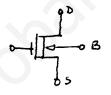
- i) DISPOSITIOUS BILATERALES.
- ii) UNIPOLARES
- in out impedencia de entrada (poètro discado en DC)
- WAD IS UST A TO BE ST LE BY LO IS FOR THE STAND (VI
- V) AUTORISCADO (ACTAS DENSI DADES DE INTEGNACIÓN)
- VI) IMPEDANCIA PIRÁCTICAMENTE INFINITA EN NO CONDUCCIÓN (EXCERENTE LLAVE ANALÓE CA)

POR IZI y VI) LA TELNOLOGIA MOS PERMITE ALMACENAR CARGO EN UN NUOD DURANTE INTERVALOS TEMPORALES LARGOS.

SIMBOLOS PARA EL TOR. MOS:

N MOS :





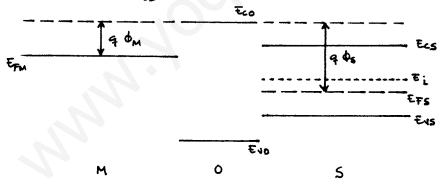
EM POBIZECI MIBNTO

PMOS:

LOS MISMOS PETTO CON LAS PUNTAS DE FLECHA CAMPIADAS.

1.2.3. DIAGRAMA DE BANDAS DE LA ESTRUCTURA MOS:

INICIALMENTE SEPARADOS:



DELASAST 36 NO DAUG : MA P. DESTURE 36 AS P. DESTAN AS

4 φ : FUNGON DE TRABARO.

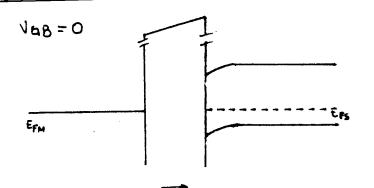
12. SEMICONDOCTOR

CUANDO AL UNIRSE LOS MATERIALES FORMAN UN SISTEMA EN EQUILIBRIO, SE PRODUCE UNA TRAC FERENCIA DE CARGA GIRACIAS A QUE LAS FUNCIONES DE TRABADO BEL METAL Y EL SEMI-CON DUCTOIZ NO SON IGUALES:

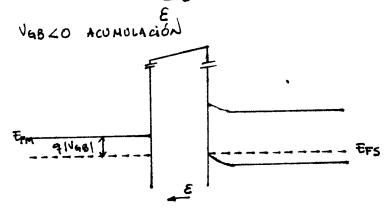
- i) $\phi_s > \phi_M$: CARGA + EN LA PUERTA + EN EL SUBSTRATO.

 POTENCIAL DE CONTACTO POSÍTIVO.
- ii) $\phi_s < \phi_M$: Δ LA INVERSA.

SUPONER \$ > Om Y VER EL EFECTO DE APLICAR UND EXCITACIÓN EXTERNA: VGB.

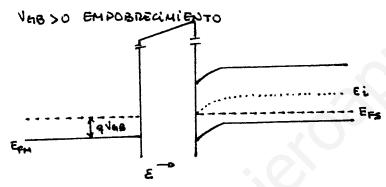


EN LA SUP. DEL SEMICONDUCTOR SE PRODOCE UNA DISMINUCIÓN DEL NÚMERO DE
HUTICOS, QUE DA LUGAR A UNA CARGA
NEGATIVA:



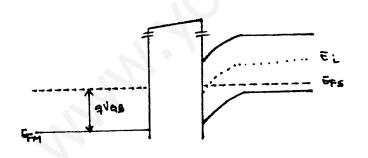
SE INDUCEN CARGAS NEGATIVAS EN EL ME-TAL Y POSITIVAS EN LA GOPEZPICIE DEL SEMICONDUCTOR.

(Ei-Efs) MAYOR EN LA SUP.



(Bi- Gr) DISMINOYE HACIA LA SUP.

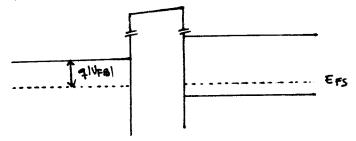
VGB >> 0 : A PARTIR DEL VAIOR DUE DA (Ei-EPS)=0 EN LA SOP. SE TIENE
inversión



(FI-FR) CAMBIA OF SIGNED EN LA SUP.,
SE PRODUCE INVERSIÓN DEL TIPO DE
SEMICONDUCTOR EN LA SUP.

VED = VFB : TENSION DE BANDA PLAND.

UPB ES LA TENSIÓN QUE APLICADA ENTRE POERTA Y SUBSTRATO COMPENSA EXACTAMENTE POTENCIAL DE CONTACTO DE LA ESTRUCTURA MOS.



DOR AHORA:

VFB = UM - 45 = PMS

EN ESTE CASO LA CARGA EN EL SERVICION BURTOR CI NOLA.

ANALISIS GENERAL DE LA ESTRUCTURA MOS

Se usan en el desanollo las signimites cargas eléctricas:

QG : CARGA EN LA PUERTA

Qc : CARGA EN EL SEMICONDUCTOR

QC = QI + OB doude : QI : CARGA EN LA CAPA DE INVERSIÓN

OB : CARGA ASOCIADA A LAS IMPUREZAS

IONIZADAS DE LA REGION EMPOBRECIA

Notación: O'x es carga por muidad ele área correspondiente a

 $Q_X: Q_X = Q_X^1 (W L)$

Se utilizan además las tensiones:

Φ : POTENCIAL DE FERMÍ DEL SEMICONAUCTOR

 Ψ_{8} : D.D.P. DE LA SUPERFÍCIE DEL SEMICONDUCTOR RESPECTO A LA REGIÓN NEUTRA DEL SUBSTRATO.

YOK : CAIDA DE TENSION EN EL ÓXIDO

VGB = VGB - VFB CAIDA DETENSION ENTRE PUERTA Y SUBS-

TIZATO RELATIVO A LA TENSIÓN DE BANDA

POTENCIAL DE FERMI: es el potencial de contacto del Si intu seco respecto al extrínseco

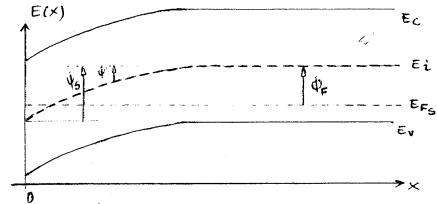
$$\phi_F = \frac{E_i - E_{FS}}{9} = V_t \ln \frac{N_A}{n_i}$$
tipo $P: P = N_A$

ECUACIONES GENERALES:

$$V_{GB}^{S} = V_{OX} + V_{S}$$

$$Q_{G}^{I} + Q_{C}^{I} = 0$$

ANALISIS DE LA ESTRUCTURA NIMOS



Suponer la superficie del suniconstrutor en equilismo em el

en la superficie: f=0: $p=p_0e^{-\frac{1}{2}N_E} \approx N_A$; $m_0=m_1e^{-\frac{1}{2}N_E}p_0e^{\frac{1}{2}}$ en la superficie: $f\neq 0$: $p=p_0e^{-\frac{1}{2}N_E} \approx N_Ae^{-\frac{1}{2}N_E} = m_0e^{\frac{1}{2}N_E} \approx N_Ae^{\frac{1}{2}N_E}$ Con la cauación de Poisson:

$$\nabla^2 \psi = -\frac{f}{\epsilon_s} = -\frac{9}{\epsilon_s} (p - m - NA)$$

$$\int NA = p_0 - m_0$$

$$\frac{d^2 \psi}{dx^2} \simeq -\frac{9NA}{65} \left\{ e^{-\frac{1}{1}V_t} - 1 - e^{-\frac{2}{1}\phi_F/V_t} \left(e^{\frac{4}{1}V_t} - 1 \right) \right\}$$

Operando y tras realizar la integración entre fex, y tros=0

em $F = \sqrt{2q} \epsilon_5$ y el signo + se aplica a las regiones de emposicioniento e inversión y el - a la de acumulación.

El potencial puede osteurse numéricamente:

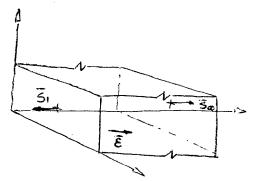
$$\int \frac{d\Psi}{\mathcal{E}(\Psi)} = x$$

$$\Psi(x)$$

con f(x) quede la estructura resulta.

ANALISIS DE CARGAS Y DOTENCIALES:

Por el teorena de Gauss:



$$Q_c' = -\epsilon_s \mathcal{E}_s$$

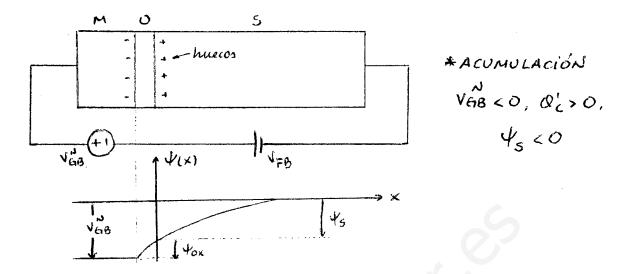
además, la carga en la puerta verifica:

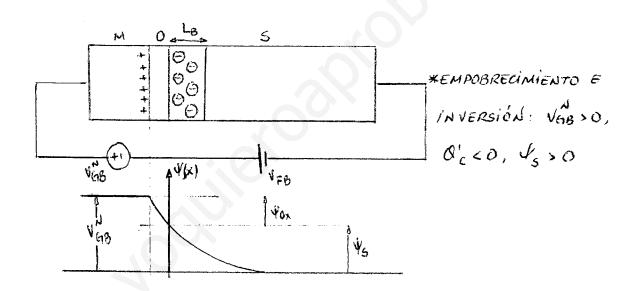
· Por tauto:

$$V_{GB}^{\lambda} = 4_s + 4_{ox}$$

Con estas enatro emaciones y VBB pueden calcularse. 4's, 40x, 0'c, 0'6, en acumulación (signo+) y en emposicioniculo e invessión (signo-) Conocido 4's se ostiluen f(x), n(x), p(x).

REGIONES DE OPERACIÓN:



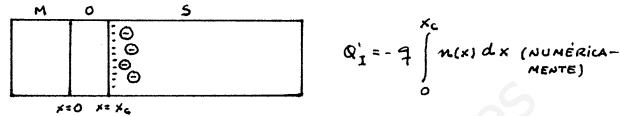


* CONDICION DE BANDA PLANA: VEB = 0, 00=0, 4=0

ANALISIS DE LA ESTRUCTURA NHOS EN INVERSIÓN

LA REGIÓN DE INVERSIÓN, ES LA MÁS IMPORTANTE PUES EN ELLA ES EN LA QUE SE PRODUCE LA CONDUCCIÓN DEL TRANSISTOR MOS.

LA CONDUCCIÓN ESTÁ ASOCIADA A LOS PORTADORES LIBRES: Q'I.



xc es t.q. si x > xc => m(x) =0

POR DEBATO DE XC LA CONCENTRACIÓN DE E- ES DESPRECIABLE.

PARA HALLAR EXPRESIONES ANALÍTICAS PARA Q'I HAY QUE APROXIMAR.

APROXIMACIONES PARA OBTENER Q'1.

SE SABE:

LUEGO SE OBTIENEN APROX. PARA Q' 7 0'8.

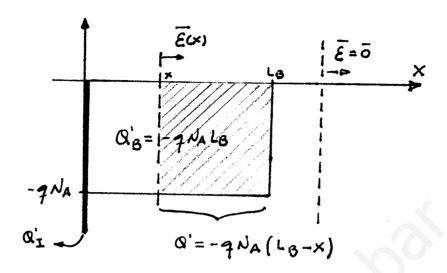
(a) EN INVERSIÓN: $\Psi_s > \varphi_{\text{E}}$. POR OTRO LADO OCURRE EN UN CASO TÍPICO: $\varphi_{\text{F}} > 9 \, \text{V}_{\text{L}}$.

POR TANTO, DE LA EXPRESIÓN DE Q'C:

6 APROXIMACIÓN DE LÁMINA DE CARGA

CONSISTE EN SUPONER NULO EL ESPESOR DE LA CAPA DE INVERSIÓN. (ES DESPRECIABLE XC (~ 0.01 pm) FRENTE A LB (AN CHURA DE LA REGIÓN EMPOBRECIDA).

ADEMAS POR CONTINUIDAD, EL POTENCIAL US CAE EN LA REGIÓN EMPOBRECIDA.



CON LA FIG. Y EL TEOREMA DE GAUSS:

$$\int \bar{\mathcal{E}} d\bar{s} = \frac{Q}{\epsilon_{5}} \Rightarrow -\mathcal{E}(x) \, \forall l = \frac{Q}{\epsilon_{5}} \Rightarrow$$

$$S_{c}$$

$$\Rightarrow \mathcal{E}(x) = -\frac{q \, N_{A}}{\epsilon_{5}} \, (x - L_{B})$$

$$\mathcal{E} = -\frac{d \, J}{d x} \Rightarrow \frac{d \, J}{d x} = \frac{q \, N_{A}}{\epsilon_{5}} \, (x - L_{B}) \Rightarrow \int d \, J = \frac{q \, N_{A}}{\epsilon_{5}} \int (x - L_{B}) \, dx$$

$$\Rightarrow \int (L_{B}) - \int (0) = \frac{q \, N_{A}}{\epsilon_{5}} \left\{ \frac{1}{2} L_{B}^{2} - L_{B}^{2} \right\} \Rightarrow$$

$$V_{5} = \frac{q \, N_{A}}{2\epsilon_{5}} L_{B}^{2} \Rightarrow L_{B} = \sqrt{\frac{2\epsilon_{5}}{q \, N_{A}}} \, J_{5}$$

ASI, DADA Q'3 = -
$$9NALB$$

$$Q'8 = -\sqrt{2965}\sqrt{NA}\sqrt{45} = 0$$

$$Q'3 = -F\sqrt{NA}\sqrt{45}$$

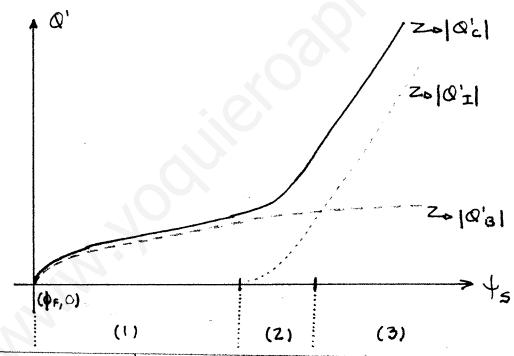
EN RESUMEN:

$$O'_{1} = O'_{c} - O'_{3}$$
 $O'_{1} = O'_{c} - O'_{3}$
 $O'_{2} = -(F\sqrt{NA}) \left\{ \psi_{5} + V_{\pm} e^{(\psi_{5} - 2\phi_{F})/V_{\pm}} \right\}^{1/2}$
 $O'_{8} = -F\sqrt{NA} \left\{ \psi_{5} \right\}^{1/2}$

SUBREGIONES DE LA REGIÓN DE INVERSIÓN

TENIENDO EN CUENTA LA VARIACIÓN CON 45 DE LAS DISTINTAS

CARGAS INVOLUCRADAS:



SUBREGIÓN	CONDICIÓN SOBRE 45	CARACTERÍSTICA
(1):INVERSIÓN DÉBIL	$\Phi_F \le \Psi_S \le 2\Phi_F$	do's ~ do's
(2): Inversión Modera da	$2\phi_{F} \leq Y_{S} \leq 2\phi_{F} + \phi_{ZO}$	TRANSICIÓN
(3): inversión fuerte	2¢++¢20 = 45	$\frac{dQ_c'}{dV_s} \simeq \frac{dQ_r'}{dV_s}$

EMPOBRE- DOMINAN LAS VARIACIONES

CIMIENTO DE LA CARGA DE INDUREZAS

DE LA CARGA DE INVERSIÓN

 $h_0 = \Phi_F$ $\Phi_{H_0} = 2\Phi_F + \Phi_{Z_0}$

RELACION ENTRE VGB Y 45 EN INVERSION

SE SABE:

$$V_{GS}^{N} = V_{OX} + V_{S}$$

$$Q'_{G} = C'_{OX} + V_{OX}$$

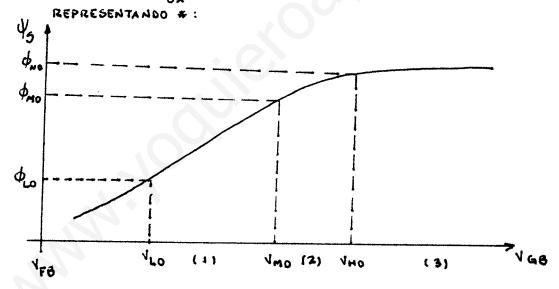
$$Q'_{G} + Q'_{C} = 0 \implies Q'_{G} = -(Q'_{I} + Q'_{G})$$

CON LAS RELACIONES ANTERIORES :

$$V_{68} = V_{5} - \frac{Q_{1}^{\prime} + Q_{8}^{\prime}}{C_{0x}^{\prime}}$$

ASÍ, USANDO LOS VALORES CALCULADOS DE Q'I 7 Q'8:

SIENDO $\chi = \frac{F\sqrt{N_A}}{C'_{OT}}$ EL LLAMADO COEFICIENTE DE EFECTO SUBSTRATO.



LAS SUBREGIONES EN FUNCIÓN DE VAR QUE DAN:

(3): INV. FUERTE: YGG > NZO +VMO

EL VALOR DE VZO NO ESTÀ DEFINIDO CON PRECISIÓN, TIPICAMENTE:

VZO ~ 0.54 A TEMP. AMBIENTE.

RELACIÓN ENTRE Q' Y VEB EN EL CASO GENERAL:

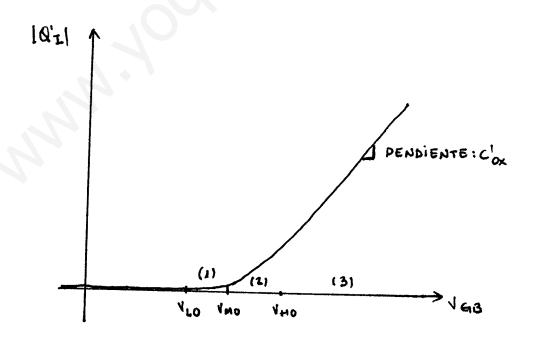
RELACIÓN FUNDAMENTAL PARA EL ESTUDIO DE LOS FENÓMENOS DE CONDUCCIÓN POR DAR LA CARGA DISPONIBLE DE PORTADORES LÍBRES.
SE TIENE:

CON LO QUE NO ES POSIBLE CALCULAR $Q_1' = Q_1' (VGB)$ SI SE TIENE UNA RELACIÓN PARAMÉTRICA:

$$V_{GB} = V_{FB} + V_{S} + \frac{Q'_{G}}{C'_{OX}} = V_{FB} + V_{S} - \frac{Q'_{I}}{C'_{OX}} + V_{S} \Rightarrow D$$

$$Q'_{I} = -C'_{OX} \left(V_{GB} - V_{FB} - V_{S} - V_{S} \right)$$

ESTA CON (&) DERMITE OBTENER :



RELACIÓN ENTRE Q'1 Y VAB EN INVERSIÓN FUERTE.

EN INV. FUERTE:

$$\Psi_{S}(VGB) = \Phi_{B}$$
 (CONSTANTE)

POR TANTO LA ANCHURA DE LA REGIÓN DE EMPOBRECIMIENTO ALCANSA UN VALOR MÁXIMO QUE NO VARÍA AL AUMENTAR VAB:

CON ESTA SUPOSICIÓN ES POSIBLE DESPEJAR Q'1 = Q'1 (148) :

$$Q'_{3} = -C'_{0x} (V_{68} - V_{70})$$

$$V_{70} = V_{F3} + \Phi_{3} - \frac{Q'_{5}}{C'_{0x}} = V_{F3} + \Phi_{3} + \sqrt[3]{\Phi_{3}}$$

LA CANTIDAD 1 TO SE DENOMINA TENSIÓN UMBRAL (TIENE GRAN IMPORTANCIA EN ANÁLISIS Y DISEÑO DE CIRCUITOS).

OBSERVACIONES:

- (a) Ito depende de ϕ_B . ϕ_B Puede determinarse empiricamente o hacer aprox. : $\phi_B = 2\phi_F + 6 V_{\xi}$
- (b) LA ELECCIÓN DEL CODO DE LA REGIÓN DE INV. FUERTE IMPLICA UN COMPROMISO ENTRE SIMPLICIDAD Y PRECISIÓN.
- © EN ALGUNOS TEXTOS: $\phi_B = 2 \, \phi_F \, \ \, \sqrt{\ \ \, }$ $V_{TO} = V_{HO} = V_{HO}$, LO QUE PUEDE DAR LUGAR A ERRORES.

RELACION ENTRE VGB Y Q'I EN INVERSIÓN DÉBIL:

EN ESTA SUBREGION :

$$\Psi_s \gg V_t e^{(\Psi_s - Z \Phi_F)/V_t} = \xi$$

CON ESTO, DESARROLLANDO EN SERIE DE TAYLOR:

$$\sqrt{+_s + 1_t e^{(+_s - 2\phi_r)/1/t}} = \sqrt{+_s + \xi} \simeq \sqrt{+_s} + \frac{1}{2\sqrt{+_s}} \xi$$

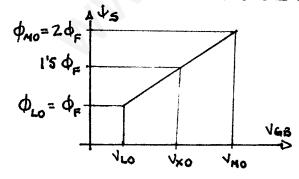
LUEGO:
$$0.1 = -\frac{F\sqrt{N_A}}{2\sqrt{+_S}} \sqrt{\frac{(+_S - Z\phi_F)}{V_t}}$$
 (*)

UTILIZANDO EL HECHO : | Q'1 | CC | Q'5 | SE TIENE:

$$V_{68} = V_{F8} + V_{5} - \frac{Q'_{1} + Q'_{3}}{C'_{0x}} \simeq V_{F3} + V_{5} + \sqrt{V_{5}} \Longrightarrow V_{5} \simeq \left\{ -\frac{\gamma}{2} + \sqrt{\frac{\gamma^{2}}{4} + V_{68} - V_{F8}} \right\}^{2}$$

CON LO QUE SUSTITUYENDO EN (#) SE OBTIENE Q'= Q'1 (148).

UNA EXPRESION MAS SIMPLE:



SE OBTIENE DE LINEALIZAR LOCALMENTE

LA DEPENDENCIA DE ψ_s Y VGB ALREDEDOR

DEL PUNTO (v_{xo} , $I'S\phi_{F}$): $\frac{v_{gb}}{v_{g}} = \frac{v_{gb} - v_{xo}}{v_{gb}}$

SE OBTIENE ENTONCES:
$$(VGB-Vxo)/(noV_E)$$

$$Q'_{I} \simeq Q'_{Ixo} C$$

$$Q'_{Ixo} = -\frac{F\sqrt{N_A}}{2\sqrt{15\phi_F}} V_E C$$

ESTA DEPENDENCIA EXPONENCIAL SE CORROBORA EXPERIMENTALMENTE.

RELACIÓN ENTRE VGB Y Q'I EN INVERSIÓN MODERADA

NO PUEDE HAGERSE NINGUNA SIMPLIFICACIÓN. HAY QUE USAR LAS EXPRE

SIONES PARAMÉTRICAS DEL CASO GENERAL.

INFLUENCIA DE LAS CARGAS EN EL ÓXIDO SOBRE LA TENSIÓN DE BANDA. PLANA

EXISTEN CARGAS PARÁSITAS EN BL ÓXIDO QUE AFECTAN AL FUNCIONA MIENTO DE LA ESTRUCTURA .

COMPONENTES DE LAS CARGAS:

- @ CARGAS FIJAS: MUY PRÓXIMAS A LA ENTREFASE ÓXIDO-SEMICONDUCTOR, SE DEBEN AL MECANISMO DE FORMACIÓN DEL ÓXIDO. SON INDEPENDIENTES DEL ESPESOR DEL ÓXIDO, EL TIPO DE DOPADO Y LA CONCENTRACIÓN DEL MISMO.
- (b) CARGAS ATRAPADAS EN EL ÓXIDO, PRÓXIMAS (USUALMENTE) A LAS ENTREFASES. SE ADQUIEREN POR RADIACIÓN, FOTDEMISIÓN, ETC..
- © CARGA IONICA MÓVIL, POR CONTAMINACIÓN DE IONES ALCALINOS. PUEDE MOVERSE BAJO UN CAMPO ELÉCTRICO.
- d carga agociada a estados superficiales rápidos, por defectos en la entrefase. Se original trampas cadaces de intercambiar portadores módiles con el semiconductor.

GRACIAS A LAS ACTUALES TÉCNICAS DE FABRICACIÓN SE REDUCE SU

INFLUENCIA DE MODO QUE DUEDE SUPONERSE TODA LA CARGA

EN LA ENTREFASE OXIDO-SEMICONAUCTOR, POSITIVA (INDEPENDIEN
TEMENTE DEL TIPO DE SUBSTRATO) Y DE VALOR FIJO:

POR LA PRESENCIA DE ESTAS CARGAS, LA TENSIÓN DE BANDA PLANA QUEDA:

TODOS LOS RESULTADOS EX PUESTOS VALEN (ON ESTA TEN-SIÓN DE BANDA PLANA.

CAPACIDAD EN PEQUEÑA SEÑAL DE LA ESTRUCTURA MOS (NMOS)
EL SISTEMA MOS FORMA UN CONDENSADOR DE QUE PUEDE
ASOCIARSE UNA CAPACIDAD:

$$\Delta V_{GB} \stackrel{+}{=} \frac{1}{1 - \Delta Q_{G}} \quad C_{1b} = \frac{dQ_{c}}{dV_{GB}}$$

COMO:

$$\Delta v_{GB} = \Delta \psi_{ox} + \Delta \psi_{s} \left\{ \frac{1}{c_{Sb}'} = \frac{dv_{GB}}{dQ_{G}'} = \frac{d\psi_{ox}}{dQ_{G}'} - \frac{d\psi_{s}}{dQ_{c}'} \right\}$$

REGIÓN DE ACUMULACIÓN:

EN ESTA REGIÓN: 45 CO Y doc >> 1 Si lys 1>41t Luego:

REGIONES DE EMPOBRECIMIENTO E INVERSIÓN: SEA 45 > 414

$$c'_{c} = -\frac{dQ'_{c}}{dV_{s}} = F\sqrt{N_{A}} \frac{1 + exp[(V_{s}-2\Phi_{F})/V_{t}]}{2\sqrt{V_{s}+V_{t}} exp[(V_{s}-2\Phi_{F})/V_{t}]}$$

REALIZANDO UN CÁLCULO SEPARADO DE LAS CONTRIBUCIONES DE LAS CAR GAS ASOCIADAS POR UN LADO A LAS IMPUREZAS IONIZADAS Y POR OTRO A LAS CARGAS DE LA CAPA DE INVERSIÓN:

$$c'_{c} = -\frac{d\Omega'_{B}}{dV_{S}} - \frac{d\Omega'_{I}}{dV_{S}} = c'_{B} + c'_{I}$$

CON LA APROXIMACIÓN DE LÁMINA DE CARGA:

$$C'_{8} = F \sqrt{NA} \frac{1}{2\sqrt{Y_{S}}}$$

$$LUEGO:$$

$$C'_{1} = C'_{C} - C'_{B} = F \sqrt{NA} \left\{ \frac{1+Q}{2\sqrt{Y_{S}+V_{L}Q^{(Y_{S}-2\Phi_{F})/V_{L}}}} - \frac{1}{2\sqrt{Y_{S}}} \right\}$$

ES UNA EXPRESIÓN QUE INTRODUCE GRANDES ERRORES EN EL CÁLCULO DE LA CAPACIDAD PUES SI BIEN LA APROXIMACIÓN DE LAMINA DE CARGA DA BUENOS RESULTADOS PARA OBTE-NER LAS CARGAS NO LOS DA EN SUS DERIVADAS.

UN ANAUSIS MÁS PRECISO ARROJA:

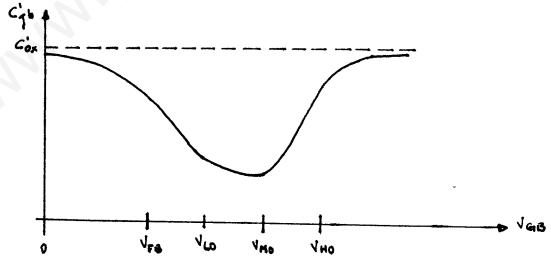
$$C'_{G} = F\sqrt{N_{A}} \frac{1}{2\sqrt{\psi_{S} + \psi_{E} \exp\left[\left(\psi_{S} - 2\phi_{F}\right)/\psi_{E}\right]}}$$

$$C'_{1} = F \sqrt{N_{A}} \frac{e \times p \left[(\Psi_{S} - 2 \Phi_{F})/V_{E} \right]}{2 \sqrt{\Psi_{S} + V_{E}} \exp \left[(\Psi_{S} - 2 \Phi_{F})/V_{E} \right]}$$

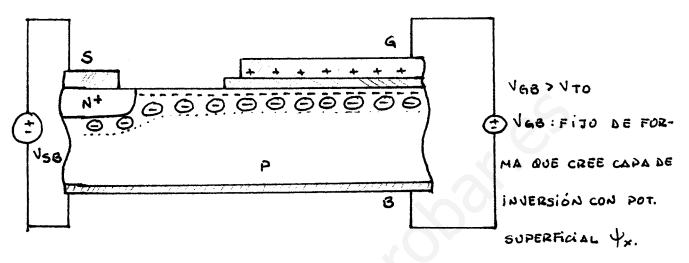
$$C'_{o} \times \frac{c'_{c}}{\Phi_{F}} = 2 \Phi_{F} :$$

$$C'_{o} \times C'_{S} = C'_{1}.$$

LA CAPACIDAD TOTAL FUNCIÓN DE LA TENSIÓN APLICADA TIENE LA FORMA:



ANALISIS GENERAL DE LA ESTRUCTURA MOS DE TRES TERMINALES: ANTES DE ANALIZAR LA ESTRUCTURA DE CUATRO TERMINALES SE VE LA FORMA EN QUE SE AFECTA EL CÁLCULO DE Q'1 (VGB) AL AÑADIR UN TERMINAL.



- (Δ) AL HACER VSB > 0 (LA UNIÓN PN+ INVERSAMENTE POLARIZADA)

 SE CREA UNA SITUACIÓN DE NO EQUILIBRIO: LOS ELECTRONES SON ATRAI
 DOS HACIA LA REGIÓN N+ (CON LO QUE LA INVERSIÓN EN LA SUPERFÍCIE DEL

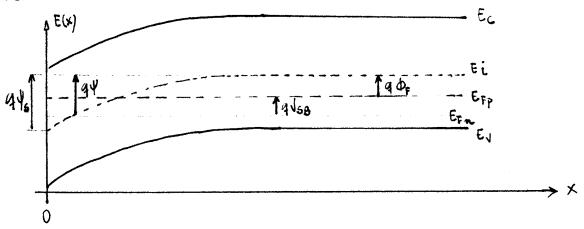
 SEMICONDUCTOR SE DEBILITA), PARA RESTAURAR EL NÍVEL DE INVERSIÓN ES

 PRECISO APLICAR UN VALOR DE VGB TAL QUE EL POTENCIAL EN LA

 SUPERFÍCIE SEA Ψ_x + USB.

EL DIAGRAMA DE BANDAS SE MODIFICA APARECIENDO DOS CUASINIVELES

DE FERMI:



DE ESTE MODD, LA CONCENTRACIÓN DE PORTADORES EN LA SUPERFÍCIE PASA A SER:

$$n = n_i \exp \{(E_{Fn} - E_i)/KT\}$$

$$p = n_i \exp \{(E_i - E_{FP})/KT\}$$

Y DE ESTAS EXPRESIONES CON EL DIA GRAMA DE BANDAS:

$$n = n_1 \exp \{ [\psi(x) - \phi_F - Vs8] / V_E \} = p_0 \exp \{ [\psi(x) - 2\phi_F - Vs8] / V_E \}$$

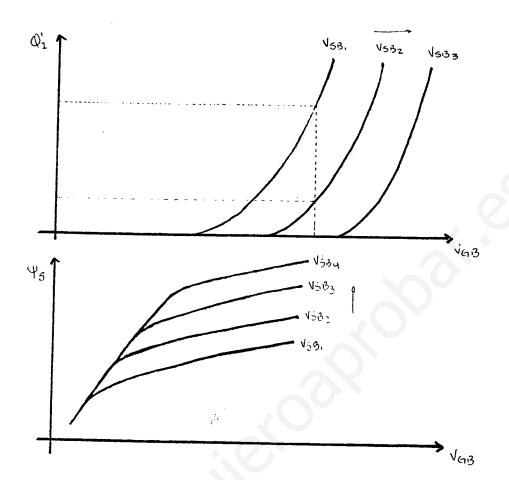
$$p = n_1 \exp \{ [\phi_F - \psi(x)] / V_E \} = p_0 \exp \{ - \psi(x) / V_E \}$$

DONDE PO ~ NA REPRESENTA LA CONCENTRACIÓN DE HUECOS EN LAS
PROFUNDIDADES DEL SUBSTRATO, SE SUPONE QUE LA ESTADÍSTICA
ENTRE ELECTRONES Y HUECOS NO SE VE AFECTADA EN LAS PROFUND
DIDADES DEL SUBSTRATO.

OPERANDO DE LA MISMA MANERA QUE EN EL CASO DE DOS TERMINA LES Y CON LA APROXIMACIÓN DE LÁMINA DE CARGA SE OBTIE-NE PARA INVERSIÓN:

CON OBJETO BE CALCULAR
$$Q'_{1} = Q'_{1}(V_{98},V_{58})$$
 SE UTILIZAN:

 $V_{68} = V_{F8} + V_{5} + V_{5} + V_{4} + V_{4} + V_{4} + V_{5} + V_{5$



EL COMPORTA MI ENTO CUALITATIVO ES IDENTICO AL CASO, DE DOS TERMINALES APARECE DEPENDENCIA PARA MÉTRICA CON VSB. PUEDEN MANTENERSE LAS SUBREGIONES DE OPERACIÓN.

OBSERVACIONES:

- a los limites de las distintas subregiones de operación de-Penden del valor relativo de ψ_s respecto a $2\phi_F + v_SB$.
- (B) EFECTO SUBSTRATO: TODO DUMENTO DE USB DISMINUYE EL NIVEL DE INVERSIÓN A MENOS QUE SE DUMENTE USB.

REGIONES DE OPERACIÓN DE LA ESTRUCTURA MOS DE TRES TERMINALES.

· SE EXPRESAN EN FUNCIÓN DE TRES VARIABLES: 4, VGB, VGS.
REGIONES DE OPERACIÓN PARA 45:

(1) INVERSION DEBIL: $\phi_L \leq \psi_S \leq \phi_M$

con
$$\phi_L = \phi_F + V_{SB}$$
, $\phi_M = 2\phi_F + V_{SB}$.

(2) INVERSIÓN MODERADA: OM = +s = OH

CON $\phi_{H} = 2\phi_{F} + V_{SB} + \phi_{Z}$ Dificil DE DEFINIR CON PRECISIÓN.

(3) INVERSION FUERTE: OH & US

$$\frac{\phi_{L}}{\phi_{F}+\sqrt{58}} \xrightarrow{(1)} \frac{\phi_{M}}{\phi_{M}} \xrightarrow{(2)} \frac{\phi_{H}}{\phi_{H}} \xrightarrow{(3)} \psi_{S}$$

POR ENCIMA DE ϕ_H EL COMPORTAMIENTO ES TÍPICO DE INVERSIÓN FUERTE: $O'_2(V_{68})$ ES UNA RECTA Y ψ_S ES PRÁCTICAMENTE CONSTANTE. REGIONES DE OPERACIÓN PARA UGB:

- (1) INVERSION DEBIL: VABL & VAB & VABM
- (2) JAUERSION MODERADA: VABM & VAB & VABH
- (3) INVERSION FUERTE: VABH & VAB

CON:
$$VGBL = VGB(\Phi_L) = VFB + \Phi_F + VSB + \sqrt{\Phi_F + VSB}$$

$$VGBM = VGB(\Phi_H) = VFB + Z\Phi_F + VSB + \sqrt{Z\Phi_F + VSB}$$

$$VGBH = VGB(\Phi_H) = VGBM + VZ$$

VZ TIPICO O.SV, DISHINUY & L'GERAMENTE CON USB.

REGIONES DE OPERACIÓN PARA VAS:

SE TIENE QUE VGS = VGB - VSB , ASI :

(A) INVERSIÓN DÉBIL: UL = Vas = VM

(2) INVERSIÓN MODERADA: UM & UGS & UH

(3) = NUERSIÓN FUERTE: VH ≤ VGS

CON
$$V_{L} = V_{FB} + \phi_{F} + \sqrt{\phi_{F} + V_{SB}}$$

$$V_{M} = V_{FB} + 2\phi_{F} + \sqrt{2\phi_{F} + V_{SB}}$$

$$V_{H} = V_{M} + \sqrt{2}$$

ANALISIS EN LA SUBREGIÓN DE INVERSIÓN FUERTE

APROXIMACIÓN: 45 SE MANTIENE CASÍ CONSTANTE:

CON ESTO, LA PROFUNDIDAD DE LA REGIÓN EMPOBRECIDA ALCAN

$$C_{B} = \sqrt{\frac{2 \epsilon_{S}}{q N_{A}}} \sqrt{\phi_{B} + V_{SB}}$$

$$C_{B} = -\sqrt{c_{OX}'} \sqrt{\phi_{B} + V_{SB}}$$

ASI :

$$Q'_{I} = - C'_{OX} \left[V_{GB} - V_{GBT} (V_{SB}) \right]$$

$$V_{GBT} = V_{FB} + \phi_{B} + V_{SB} + \sqrt{\phi_{B} + V_{SB}}$$

VGBT SE LLAMA TENSION DE UMBRAL GB EXTRAPOLADA.

ANDLOGAMENTE:

$$Q'x(V_{83},V_{88}) = -C'_{0x} \left[V_{65} - V_{7}(V_{88}) \right]$$

$$V_{7} = V_{687} - V_{88} = V_{F8} + \phi_{8} + \gamma \sqrt{\phi_{8} + V_{88}}$$

RECORDANDO EL VALOR UTO (PARA VSB=0):

SE TIENE:

$$v_T = v_{TO} + \gamma \left\{ \sqrt{\phi_8 + v_{SB}} - \sqrt{\phi_B} \right\}$$

SUBREGIÓN DE INJERSIÓN MODERADA

NO ES POSIBLE SIMPLIFICAR LA EXPRESIÓN GENERAL DE Q'1 (VGB, VSB)

ANALISIS EN LA SUBREGIÓN DE INVERSIÓN DEBIL

AQUÍ, COMO EN EL CASO DE DOS TERMINALES:

$$Q'_{1} = -\frac{F\sqrt{N_A}}{2\sqrt{+s}} V_{t} e \times P\left\{ (\psi_{s} - 2\phi_{F} - V_{SB})/V_{t} \right\}$$

CON 10'11 44 10'8 | SE TIENE:

$$\psi_{s} = \left\{ -\frac{\chi}{2} + \sqrt{\frac{\chi^{2}}{4} + V_{GB} - V_{FB}} \right\}^{2} = \psi_{sa}$$

OBSERVAMOS QUE 45 NO ES FUNCIÓN DE 158 EN ESTA SUBREGIÓN:

$$Q'_{I} = -\frac{F/N_{A}}{2/4_{sa}(N_{GB})} V_{t} Q^{(4_{sa}(N_{GB}) - 2\phi_{F})/V_{t}} Q^{-N_{SB}/V_{t}}$$

QUE PRESENTA SEPARADOS LOS EFECTOS DE VAB Y VSB.

SIMPLIFICANDO LA DEPENDENCIA RESPECTO A VGB:

$$2\phi_{F}+V_{SB}$$

$$V_{S}-(1.5\phi_{F}+V_{SB}) \simeq \frac{V_{GB}-V_{GBX}}{m}$$

$$m = \frac{dV_{GB}}{dV_{S}}\Big|_{1.5\phi_{F}+V_{SB}} = \frac{1+\sqrt{1.5\phi_{F}+V_{SB}}}{2\sqrt{1.5\phi_{F}+V_{SB}}}$$

$$V_{GBX}$$

$$V_{GBX} = V_{FB}+1.5\phi_{F}+V_{SB}+V_{SB}+V_{SB}$$

SUPONIENDO ADEMÁS QUE VYSA ES PRÁCTICAMENTE CONSTANTE FRENTE AL TÉRMINO EXPONENCIAL:

$$Q'_{1} = Q'_{1x} Q \frac{(V_{68} - V_{68x})/nV_{t}}{2\sqrt{1.5}\phi_{F} + V_{58}}$$

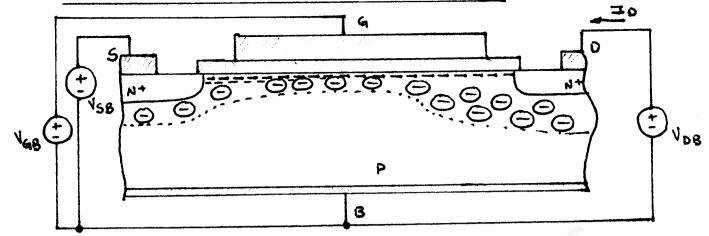
$$Q'_{1x} = -\frac{F\sqrt{N_{A}}}{2\sqrt{1.5}\phi_{F} + V_{58}} V_{t} Q$$

0 BiEN: Q'_I = Q'IX (UGS - Vx)/nVt

Vx = VG8x - VSB.

	INV. DEBIL	in. Moderada	inv. Puerte
DEFINICIÓN PARA Ys	Φ = 45 = ΦM	Om = 45 = O+1	Φ# = Ys
Definición para Ugb Dado Usb	JGBL EJGBEJGBM	VGBM & VGB & VGBH	V684 & V6B
Definición para Vas dado U s b	VI E VGS EVM	UM & VGS & VH	1+1 < 165
18/21/12/81	L	VARÍA	ALLOS OSTAGO, ICC
c'1/c'B	CENTRO TONA	VERLA	>> 1
d4s/avas	APROX. CTE. AL- CANTA SU MÁXIMO	VARÍA	PEQUEÑO
0'1 = 0'1 (168) DARA 158 CTE.	EXPONENCIAL		Li N E A L

ESTRUCTURA NOS DE CUATRO TERMINALES.



SE PRETENDE OBTENER

PARA CUAL QUIER VALOR DE LAS TENSIONES, ESTO ES, SE DESEA UN MODELO ESTÁTICO EN GRAN SEÑAL DEL TRANSISTOR MOS.

HIPOTESIS DE PARTIDA:

- @ CANAL LARGO & ANCHO (W, L GRANDES) : SE DESPRECIAN LOS EFEC TOS DE BORDE.
- (b) UNIONES PN+ INVERSAMENTE POLARIZADAS : VDB > 0; VSB > 0.
- © APROXIMACIÓN DE CANAL GRADUAL, ESTO ES, LA COMPONENTE HORIZON.

 TAL DEL CAMPO ES DESPRECIABLE FRENTE A LA VERTICAL PUNTO A PONTO
 LUEGO PUEDEN EXTENDERSE LOS RESULTADAS YA OBTENIDOS PARA
 LA ESTRUCTURA MOS DE TRES TERMINALES.

REGIONES DE OPERACIÓN.

- · EL NOMBRE DADO A LA REGIÓN DE OPERACIÓN DEL TRANSISTOR CORRESPONDE CON EL DIVEL DE INVERSIÓN DE LA ZONA DEL CANAL MÁS FUERTEMENTE INVERTIDA.

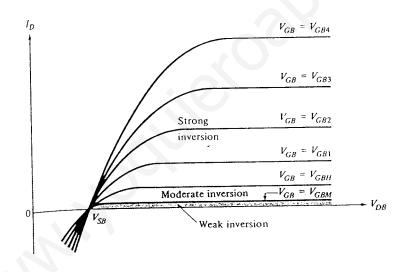
SE SUPONDRÀ 108 > 158 (EN OTRO CASO CAMBIAR LOS NOMBRES ASIGNADOS A LOS TERMINALES DE DRENADOR Y FUENTE) Y LA ZONA MÁS FUERTEMENTE INJERTIDA SERÁ LA DE PUENTE.

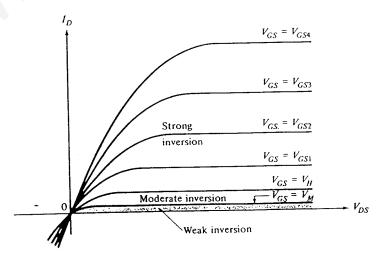
DE ESTA FORMA :

REGIÓN	CONDICIÓN SOBRE EL CANAL	
INVERSIÓN FUERTE	LA ZONA MAS INVERTIDA EN INV. FUERTE	
INVERSIÓN MODERADA	LA ZONA MÁS INVERTIDA EN INV. NODERADA	
INVERSIÓN DÉBIL	LA ZONA MÁS INVERTIDA EN INV. DÉBIL	

CURJAS TIPICAS.

USB ES UN PARAMETRO FIJO EN CADA CASO. ADEMAS: VGB; = VGS; + VSB.





MODELO GENERAL DE LAMINA DE CARGA

OBSERVACIONES GENERALES

© LA D.D.P. ENTRE LA SUPERFICIE

DEL SEMICONDUCTOR Y EL FONDO,

V₃, VARÍA A LO LARGO DEL CANAL:

(5) LAS CARGAS POR UNIDAD DE AREA EN EL SEMICONDUCTOR VARÍAN A LO LARGO DEL CANAL :

- C EXISTEN DOS COMPONENTES DE CORRIENTE :
 - ARRASTRE DE Q'T EN EL CAMPO HORIZONTAL
 - DIFUSION POR LA DISTRIBUCIÓN NO UNIFORMEDE Q'1.

CALCULO DE LAS COMPONENTES DE CORRIENTE :

I(y) =
$$I_A + I_{Oif}$$

$$I_A = \lim_{t \to 0} t \times i_A$$

$$j_A = \mu q m E(y) = \mu q m \frac{d \psi_s}{d \eta}$$

$$CON q m = -\frac{d Q_z}{d T} = -\frac{1}{t} \frac{j}{w} \frac{d Q_z}{d \eta} = -\frac{1}{t} \frac{i}{w} \frac{d Q_z}{d \eta} = -\frac{1}{t} \frac{i$$

LUEGO:

ADEMAS IDIF
$$\lim_{t\to 0} tw \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \frac{dv_{s}}{dy}$$

UTILIZANDO *:

$$D = \mu Vt$$

$$I_{Dif} Dw \frac{dQ_{1}^{\prime}}{dy} = \mu w V_{t} \frac{dQ_{2}^{\prime}}{dy}$$

SE TIENE:

EN ESTADO ESTACIONARIO, LA INTENSIDAD ES LA MISMA DARA CADA Y :

INTEGRANDO ENTRE LA FUENTE (Y=0, +5 = +50) + EL DRENADOR (Y=L, +5 = +5L) SE OBTIENE:

$$\int I_0 dy = W \left\{ \int \mu(-Q'_1) d\psi_S + V_t \int \mu dQ'_1 \right\} \Rightarrow 0$$

$$\Rightarrow I_0 = \frac{W}{L} \left\{ \int \mu(-Q'_1) d\psi_S + V_t \int \mu dQ'_1 \right\}$$

$$\psi_{50} = \frac{W}{L} \left\{ \int \psi(-Q'_1) d\psi_S + V_t \int \mu dQ'_1 \right\}$$

SUPONIENDO MOVILIDAD CONSTANTE Y UTILIZANDO LA RELACIÓN E d'1 Y 45 DADA:

$$Io_{A} = \frac{w}{L} \mu c'o_{x} \left[(V_{68} - V_{F8}) (\Psi_{SL} - \Psi_{SO}) - \frac{1}{2} (\Psi_{SL}^{2} - \Psi_{SO}^{2}) - \frac{2}{3} \chi (\Psi_{SL}^{3/2} - \Psi_{SO}^{3/2}) \right]$$

$$Io_{Dif} = \frac{w}{L} \mu c'o_{x} \left[V_{t} (\Psi_{SL} - \Psi_{SO}) + V_{t} \chi (\Psi_{SL}^{1/2} - \Psi_{SO}^{1/2}) \right]$$

PARA EXPRESARLA COMO FUNCIÓN DE LAS TENSIONES:

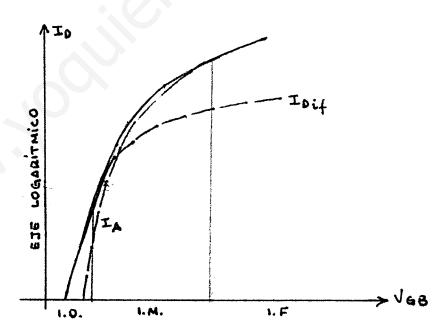
NO PUEDE DESPETARSE EXPLICITAMENTE LA INTENSIDAD EN FUNCIÓN DE LAS TENSIONES TERMINALES!

SUPONIENDO 158 FIJADO, 168 COMO PARÁMETRO Y OUE VARÍA 10F., CON LAS RELACIONES ANTERIORES SE OBTIENEN LAS CURVAS DADAS.

OBSERVACIONES:

- © EL ANÀLISIS REALIZADO DESPRECIA LA EXISTENCIA DE REGIONES DE TRANSICIÓN PARA EL POTENCIAL EN LA SUPERFICIE PRÓXIMAS A LAS DIFUSIONES N+ (QUE CONTIENEN LAS ZONAS DE CARGA ESPACIAL DE LAS UNIONES) EN LAS QUE DEBE DARSE UNA VARIACIÓN CONTÍNUA DE ESTE POTENCIAL HASTA ALCANZEAR EL VALOR DEL POTENCIAL DE LAS ZONA N+. PARA CANALES LARGOS NO SE COMETE GRAN ERROR.
- (b) LA SATURACIÓN DE LA INTENSIDAD AL DUMENTAR VAB SE DEBE A QUE PARA VAB SUFICIENTEMENTE GRANDE, LA ZONA DEL CANAL ANEXA A LA REGIÓN DE DRENADOR ENTRA EN INVERSIÓN DEBIL Y ENTONCES $+_{SL}$ SE INDEPENDIZA DE VAB.
- € EN LA REGIÓN DE INVERSIÓN FUERTE DE LAS CARACTERÍS-TICAS DOMINA LA CORRIENTE DE ARRASTRE.

EN LA INVERSIÓN DÉBIL DOMINA LA CORRIENTE DE DIFUSIÓN.



d en la expresión de la intensidad se observa la intercambiadi-Lidad entre fuente y drenador:

$$I_0 = \frac{\forall i}{L} \left\{ f(\psi_{SL}) - f(\psi_{SO}) \right\}$$

$$f(\psi_S) = \mu c_{OX} \left[\left(v_{60} - v_{FS} + v_{t} \right) \psi_S - \frac{1}{2} \psi_S^2 - \frac{2}{3} \chi + \frac{3/2}{5} + v_{t} \chi + \frac{3/2}{5} \right]$$

REGION DE INVERSIÓN FUERTE DE LAS CARACTERÍSTICAS J-V.

LIMITE DE OPERACIÓN PARA VAB

SUPONER VDB > VSB , CON ESTO, LA CONDICIÓN DE OPERACIÓN SE EXPRESA RES PECTO A LA ZONA DE FUENTE.

EXPRESIÓN DE LAS CARACTERÍSTICAS SI LA ZUNA DE DIRENADOR ESTÁ
EN INVERSIÓN FUERTE

SUPONER 108 PERUEÑO DE FORMA QUE EL CANAL ESTÉ FUERTE-MENTE INVERTIDO EN LA REGIÓN DE DRENADOR:

$$\psi_{so} \simeq \phi_8 + v_{sg}$$

$$\psi_{sc} \simeq \phi_8 + v_{sg}$$

$$\pi_s = \frac{v_0}{c} \left\{ f(\psi_{sc}) - f(\psi_{so}) \right\}$$

ALTERNATIVAMENTE:

DENOMINANDO A LA INTENSIDAD EN ESTA SITUACIÓN (DE ARRASTRE)

CON LA EXPRESIÓN DE Q'I DISPONIBLE, SUSTITUYENDO EN ELLAY

INTEGRANDO Y MANIPULANDO LA EXPRESIÓN RESULTANTE:

$$I_{DN} = \mu c_{OX} \frac{w}{L} \left\{ (V_{GG} - V_{FG} - \phi_{g}) (V_{DS} - V_{SG}) - \frac{1}{2} (V_{DS}^{2} - V_{SG}^{2}) - \frac{2}{3} \gamma \left[(V_{DS} + \phi_{g})^{3/2} - (V_{SS} + \phi_{g})^{3/2} \right] \right\}$$

QUE EN FUNCIÓN DE LAS TENSIONES TERMINALES

$$IDN = P C'ox \frac{W}{L} \left\{ \left(V_{6S} - V_{F8} - \phi_{3} \right) V_{DS} - \frac{1}{2} V_{DS}^{2} - \frac{2}{3} \gamma \left[\left(\phi_{3} + V_{S8} + V_{DS} \right)^{3/2} - \left(\phi_{3} + V_{S8} \right)^{3/2} \right] \right\}$$

EXPRESIÓN VÁLIDA HASTA VOS = VOSH, SI VOS > VOSH NO TO DO EL CANAL ESTÁ EN INVERSIÓN FUERTE, SIN EMBARGO SE APROXI-MA HASTA UNA CIERTA TENSIÓN VOS DEFINIDA COMO LA TENSIÓN DRENADOR-FUENTE TAL QUE:

HACIENDO CÁLCULOS:

$$V_{BS} = V_{BS} - \phi_{B} - V_{FB} + \frac{\chi^{2}}{2} - \chi \sqrt{V_{GS} - V_{FB} + V_{SB} + \frac{\chi^{2}}{4}}$$
A PARTIZ DEL DUNTO VIA = VIA SE HASE

A PARTIR DEL PUNTO UDS = VOS SE HACE

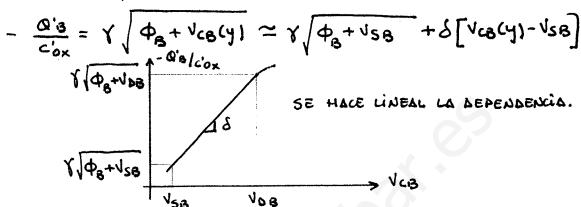
$$I_{DN} = I_{D} = cte$$

$$I_{DN} = I_{DN} |_{V_{DS} = V_{DS}}$$

$$I_{D} = \begin{cases} I_{DN} & V_{DS} \leq V_{DS} \\ I_{D} & V_{DS} > V_{DS} \end{cases}$$
O'HMICA \iff SATURACIÓN

UN MODELO APROXIMADO ON INVERSION FUERTE

CON UNA ADECUADA ELECCIÓN DE DE EL MODELO ANTERIOR DA BUENOS RESULTADOS (PRECISO), SIN EMBARGO ES DEMASIADO COMPLETO PARA ANGLISIS A MANO, DARA SIMPLIFICARLO PUEDE HACERSE:



ASÍ:

CON:

$$J_{DN} = \mu \frac{\pi}{L} \int (-Q_{2}^{2}) d\sqrt{c}B$$

QUEDA:

$$V_{SB}$$

$$T_{DN} = V_{C'OX} \frac{M}{L} \left[\left(V_{GS} - V_{T} |_{SB} \right) V_{DS} - \frac{1}{2} \left(1 + \delta \right) V_{DS}^{2} \right]$$

$$V_{T}|_{SB} = V_{FB} + \varphi_{B} + \sqrt{\varphi_{B} + V_{SB}}$$

LA TENSIÓN UT SE DENOMINA TENSIÓN UMBRAL PUERTA--FUENTE EXTRA POLADA. EN LO SUCESIVO TENSIÓN UMBRAL, VT.

$$V_{T} = V_{T0} + \gamma \left[\sqrt{\Phi_{B} + V_{SB}} - \sqrt{\Phi_{B}} \right]$$

$$V_{T0} = V_{FB} + \Phi_{B} + \gamma \sqrt{\Phi_{B}}$$

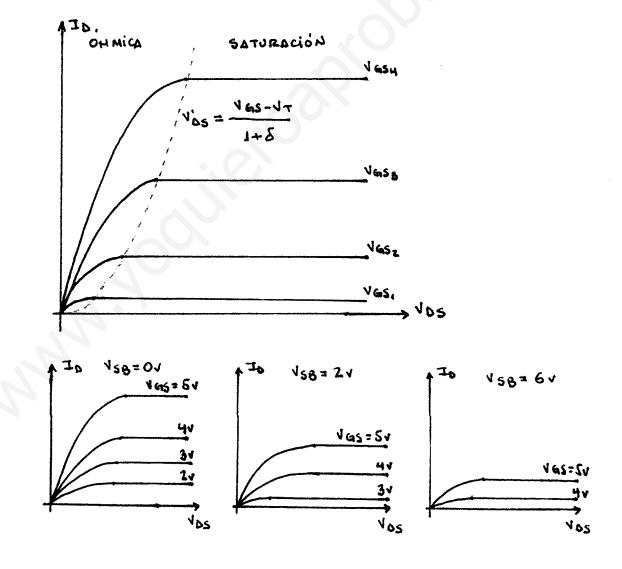
LA EXPRESIÓN DADA PARA JAN SÓLO ES VÁLIDA SI AMPOS EXTRE-MOS DEL CANAL ESTAN EN INVERSIÓN FUERTE.

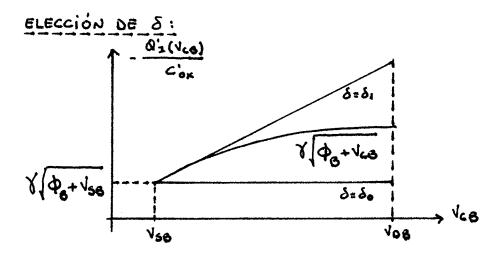
EL MODELO COMPLETO ES:

$$I_{D} = \begin{cases} \mu c'_{ox} \frac{W}{L} \left[\left(V_{GS} - V_{T} \right) V_{DS} - \frac{1}{2} \left(I + \delta \right) V_{DS}^{2} \right], V_{DS} \leq V_{DS}^{2} \\ \mu c'_{ox} \frac{W}{L} \frac{\left(V_{GS} - V_{T} \right)^{2}}{2 \left(I + \delta \right)}, V_{DS} > V_{DS}^{2} \end{cases}$$

$$V_{DS} = \frac{V_{GS} - V_{T}}{I + \delta}$$

SE PUEDE COMPROBAR QUE VOS = V'DS HACE QUE LA CARGA DE LA CARGA DE





- SE SUBESTIMA Q'6 SALVO EN LA FUENTE

- SE SOBREESTIMA Q' Y POR TANTO VOS.

S= S, PENDIENTE EN VCB = VSB

$$-\frac{Q'g}{C'ox} = \sqrt{\sqrt{\varphi_3 + V_{SB}}} + \frac{\sqrt{2\sqrt{\varphi_3 + V_{SB}}}}{2\sqrt{\varphi_3 + V_{SB}}} \left(\sqrt{c_B - V_{SB}}\right)$$

- SE SOBREESTIMA Q'8 SALVO EN LA FUENTE

- SE SUBESTIMA Q'1 .

VALORES INTERMEDIOS

$$\delta_2 = h \frac{\chi}{2\sqrt{\phi_8 + V_{SB}}}$$
 $0.5 = h \le 0.8$

$$\delta_3 = \left\{1 - \frac{\Lambda}{\kappa_1 + \kappa_2(\phi_8 + V_{SB})}\right\} \frac{\chi}{2\sqrt{\phi_8 + V_{SB}}}, \kappa_1 \vee \kappa_2$$

SE ESCOGEN SEGUN LA PRECISION DESEADA.

$$\delta_{\rm H} = \frac{\gamma}{\sqrt{1 + \phi_{\rm a} + V_{\rm SB}}}$$
 (DA BUENDS RESOLTADOS)

$$\delta_{S} = \frac{8}{4\sqrt{\varphi_{3}}}$$
 (NO DEPENDE DE 158)

PARA ANÀLISIS A MANO SUELE USARSE &=0, PARA & GRANDE PUE-DEN ALCANZARSE ERRORES DE HASTA EL 100%.

- COMPARACIÓN ENTRE LOS MODELOS PRECISO Y APROXIMADO PARA INVERSIÓN FUERTE.
- ERROR DE ALREDEDOR DEL 5%.
- EL MODELO APROXIMADO ES PREFERIBLE POR DUE :
 - © SIMPLIFICA EL ANÁLISIS A MANO Y ACELERA EL ANÁLISIS
 POR ORDENADOR.
 - (6) FACILITA EL MODELADO DINÁMICO DEL TRANSISTOR MOS.
 - (C) EL MODELO APROXIMADO CONTIENE EXPLICITAMENTE VT:
 - VT PUEDE MEDIRSE,
 - PUEDE INTRODUCIRSE UND UT EFECTIVA PARA
 MODELAR TRANSISTORES DE CANAL CORTO Y/O
 ESTRECHO.
 - AMBOS MODELOS DESDE EL PUNTO DE VISTA DE LA PRECISIÓN.

REGIÓN DE INVERSIÓN DÉBIL DE LAS CARACTERÍSTICAS 1.V.

LIMITE DE OPERACIÓN PARA VGB

SUPONER 108 > 158, CON ESTO, LA CONDICIÓN DE OPERACIÓN SE EXPRESA RESPECTO A LA ZONA DE FUENTE.

VGBL = VGB = VGBM

$$V_L = V_{FB} + \Phi_F + \gamma \sqrt{\Phi_F + V_{SB}}$$
, $V_M \simeq V_{FB} + 2\Phi_F + \gamma \sqrt{2\Phi_F + V_{SB}}$
 $V_{GBL} = V_L + V_{SB}$, $V_{GBM} = V_M + V_{SB}$

OBSERVACIONES:

- @ NO HAY NINGUNA PARTE DEL CANAL EN INJERSIÓN MODERADA
 O FUERTE.
- EL LIMITE INFERIOR DE LA ZONA DE INVERSIÓN DÉBIL ES EN LA PRÀCTICA A QUEL PARA EL CUAL LA CORRIENTE DE FUGA DE LAS UNIONES PN+ ES DESPRECIABLE.

CALCULO DE LA INTENSIDAD EN EL CANAL

DOMINA LA COMPONENTE DE DIFUSION:

$$\int_{0}^{\infty} dy = \mu \, \text{Wit} \int_{0}^{\infty} dQ_{1}^{2} \Rightarrow J_{D} = -\mu \, \frac{\Gamma}{M} \, \text{Nf} \left(Q_{1}^{2} - Q_{1}^{2}\right)$$

CON:

$$Q_{1.5}' = -F \sqrt{N_A} \left\{ \sqrt{\frac{1}{50} + \sqrt{\frac{(150 - 2\Phi_F - 158)}{10}}} - \sqrt{\frac{1}{50}} \right\}$$

$$Q_{1.0}' = -F \sqrt{N_A} \left\{ \sqrt{\frac{1}{51} + \sqrt{\frac{(150 - 2\Phi_F - 158)}{10}}} - \sqrt{\frac{1}{51}} \right\}$$

EN INVERSIÓN DÉBIL $\psi_{SO} < 2\phi_F + V_{SB}$, $\psi_{SL} < 2\phi_F + V_{DB}$ \forall ADEMÁS EL POTENCIAL EN TODOS LOS PUNTOS DE LA SUTERFÍCIE
DEL CANAL DEPENDE SOLO DE VGB (ψ_{SOL}); OSEA:

$$Ψ_{S}(Y) \simeq Ψ_{Sa}(V_{GB}) = -\frac{χ}{Z} + \sqrt{\frac{χ^{2}}{4}} + V_{GB} - V_{FB}$$
 $Q'_{1,S} \simeq -\frac{χ_{C'ox}}{2\sqrt{+_{Sa}}} V_{t} e^{(+_{Sa} - Z\Phi_{F})/V_{t}} e^{-V_{SB}/V_{t}}$
 $Q'_{1,D} \simeq -\frac{χ_{C'ox}}{2\sqrt{+_{Sa}}} V_{t} e^{(+_{Sa} - Z\Phi_{F})/V_{t}} e^{-V_{DB}/V_{t}}$

SE OBTIENE CON ESTAS RELACIONES:

$$I_D = \frac{W}{L} \hat{I}(V_{GB}) \left\{ e^{-V_{SB}/V_{t}} - e^{-V_{DB}/V_{t}} \right\}$$

$$\hat{I}(V_{GB}) = \frac{\mu c_{ox}^2 \sqrt{V_{t}^2}}{2\sqrt{V_{t}^2}} e^{(V_{SA} - 2\Phi_F)/V_{t}}$$

EN INVERSIÓN DÉBIL EL COMPORTAMIENTO ES MUY PARECIDO AL DEL TRANSISTOR BIPOLAR (ECUACIONES PARECIDAS A LAS DE EBBERS-MOLL).

EXPRESIÓN DE LA INTENSIDAD EN FUNCIÓN DE LAS TENSIONES TERMI-

$$\frac{Q_{3.0}}{Q_{15}} = e^{-(103 - 158)/1} = e^{-105/1}$$

APROXIMANDO Q'1 TAL COMO SE HACE EN LA ESTRUCTURA DE TRES TERMINALES:

$$I_{b} = \frac{w}{L} I_{x}^{\prime} e^{(Ves-Vx)/mVt} (1-e^{-Ves/Vt})$$

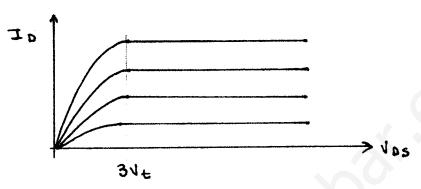
$$V_{x} = V_{FB} + 1.5 \phi_{F} + \chi \sqrt{1.5 \phi_{F} + VsB}$$

$$I_{x}^{\prime} = \mu c_{ox}^{\prime} V_{t}^{\prime} \frac{\chi}{2\sqrt{1.5 \phi_{F} + VsB}} e^{-0.5 \phi_{F}/Vt}$$

$$m = 1 + \frac{\chi}{2\sqrt{1.5 \phi_{F} + VsB}}$$

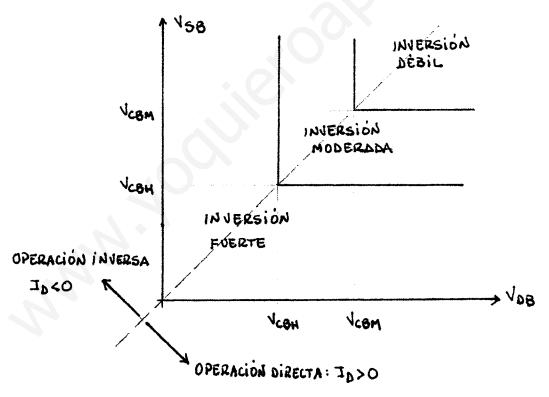
OBSERVACIONES:

- @ LA E CUACIÓN ANTERIOR NO DEBE USARSE PARA ESTUDIAR LAS VARIACIONES DE ID CON 158.
- (b) LAS CARACTERÍSTICAS ID-JOS SE SATURAN PARA UN VALOR DE VOS ≈ 314 INDEPENDIENTEMENTE DE VGS.



REGIONES DE OPERACIÓN EN FUNCIÓN DE 158, 108

PUEDE SER DE INTERÉS EN ALGUNAS APLICACIONES CON VGB CONSTANTS.

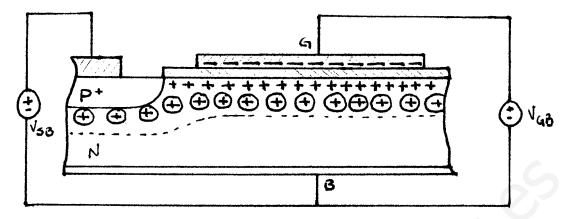


$$V_{CBH} \simeq \left\{ -\frac{\Upsilon}{2} + \sqrt{\frac{\Upsilon^{2}}{4} + V_{GB} - V_{FB} - V_{Z}} \right\}^{2} - 2 \, \phi_{F}$$

$$V_{CBM} \simeq \left\{ -\frac{\Upsilon}{2} + \sqrt{\frac{\Upsilon^{2}}{4} + V_{GB} - V_{FB}} \right\}^{2} - 2 \, \phi_{F}$$

EL TRANSISTOR PMOS

ESTRUCTURA DE TRES TERMINALES



NOS LIMITAMOS A LAS REGIÓN DE INVERSIÓN:

$$V_{GB} = V_{S} + V_{OX} + \Phi_{MS}$$

$$Q'_{G} + Q'_{O} + Q'_{I} + Q'_{B} = 0$$

$$Q'_{G} = C'_{OX} V_{OX}$$

$$Q'_{B} = F \sqrt{N_{D}} \sqrt{-V_{S}}$$

$$Q'_{C} = F \sqrt{N_{D}} \sqrt{-V_{S}} + V_{L} \exp \left[-(V_{S} - 2\Phi_{F} - V_{SB})/V_{L}\right]$$

$$V_{66} = V_{F3} + V_{s} - V_{s} - V_{s} + V_{t} \exp \left\{ -\left(\frac{1}{5} - 2 \phi_{F} - V_{58} \right) / V_{t} \right\}$$

$$Q'_{1} = C'_{ox} \left(-V_{66} + V_{F3} + V_{s} - V_{s} - V_{s} \right)$$

$$V_{F6} = \phi_{Ms} - \frac{Q'_{o}}{C'_{ox}}, \quad V_{s} = \frac{F \sqrt{N_{0}}}{C'_{ox}}$$

TENSION UMBRAL EXTRAPOLADA :

CARACTERÍSTICA J-V DEL TRANSISTOR PHOS

$$I_{DN} = -\frac{w}{L} \mu c_{OX} \left[(V_{GS} - V_{T}) V_{DS} - \frac{1}{2} (1 + \delta) V_{DS}^{2} \right]$$

$$V_{T}(V_{SS}) = V_{TO} - \gamma \left(\sqrt{-V_{SS} - \varphi_{S}} - \sqrt{-\varphi_{S}} \right)$$

$$V_{TO} = V_{FS} + \varphi_{S} - \gamma \sqrt{-\varphi_{S}}$$

OBSERVACIÓN:

SI SE CAMBIA EL SIGNO DE TODAS LAS TENSIONES Y DE LA INTENSIDAD Y SE USA IVII EN LUGAR DE VT, SE PUEDEN USAR LAS ECUACIONES DEL TRANSISTOR NMOS.

ALGUNOS FENOMENOS DE SEGUNDO ORDEN EN EL TRANSISTOR MOS.

EL COMPORTAMIENTO DEL TRANSISTOR MOS DIFIERE DEL PREVISTO POR LAS ECUACIONES DESARROLLADAS PREVIAMENTE. LAS DIFERENCIAS SE ACENTIAN AL DISMINUÍR LAS DIMENSIONES DEL TRANSISTOR.

EN MUCHOS CASOS SE RECORREN A TÉCNICAS EMPÍRICAS PARA MODELAR EFECTOS ADICIONALES.

DEGRADACIÓN DE LA MOVILIDAD. MOVILIDAD EFECTIVA.

"LA MOVILIDAD DE LOS PORTADORES EN LA SUPERFICIE DEL CANAL ES MÁS
PEQUEÑA QUE EN EL SUBSTRATO".

FACTORES QUE AFECTAN & LA MOVILIDAD:

- · LA TEMPERATURA,
- · LA BATURACIÓN DE LA VELOCIDAD DE LOS PORTADORES DEBÍ DO A LA APLICACIÓN DE UN CAMPO ELÉCTRICO HORIZONTAL SUFICIENTEMENTE INTENSO,
- EL CAMPO JERTICAL EN EL CANAL QUE TIENDE A ACELERAR

 A LOS PORTADORES HACIA LA ENTREFASE ÓXIDO-SEMICONDUCTOR

 MAS QUE CONSIDERAR LA DEPENDENCIA DE LA MOVILIDAD CON

 LAS DIVERSAS MAGNITUDES, SE UTILIZA UNA MOVILIDAD EFECTIVA:

$$I_{DN} = \frac{W}{L} \int_{A} \mu(-Q_{1}^{2}) dV_{CB} = \frac{W}{L} \mu^{*} \int_{A} (-Q_{1}^{2}) dV_{CB}$$

$$V_{SB}$$

CON:

EL CAGO DE INVERSIÓN DÉBIL NO ESTÀ SUFICIENTEMENTEINVESTIGADO.

LO QUE SIGUE ES PARA INVERSIÓN FUERTE.

DEPENDENCIA CON LA TEMPERATURA.

$$\mu_0(\tau) = \mu_0(\tau_r) \left[\frac{\tau}{T_r} \right]^{-M}$$

CON:

Tr: TEMPERATURA AMBIENTE (°C),

M : PARAMETRO EMPÍRICO (1.5 < H < Z),

Si: pow(TiPico) = 600 cm2 V-16-1, pop(TiPico) = 250 cm2 V-15-1

DEPENDENCIA CON EL CAMPO VERTICAL.

SEGUN UNA LEY EMPIRICA:

$$\mu = \frac{\mu_0}{1 + \kappa_0 \overline{\epsilon}_{x}}; \quad \widetilde{\epsilon}_{x} = \frac{\epsilon_{xs} + \epsilon_{xb}}{2}$$

CON:

MO, KO: PARAMETROS EXPERIMENTALES,

Ex 6 : CAMPO VERTICAL EN LA SOPERFICIE,

Ex 6 : CAMPO VERTICAL EN EL SUBSTRATO.

$$\mathcal{E}_{xs} = -\frac{Q'_{1} + Q'_{3}}{\epsilon_{s}}$$
, $\mathcal{E}_{xb} = -\frac{Q'_{3}}{\epsilon_{s}}$

ASi:

$$\mu = \frac{\mu_0}{1 - \kappa_0 \left(\frac{Q_1' + 2 Q_3'}{2 \epsilon_5} \right)}$$

CON LO QUE :

$$\mu^* = \frac{\mu^0}{\frac{1}{L} \int_{-L}^{L} \left\{ 1 - \frac{\alpha_0}{2 \epsilon_0} (Q_3' + 2 Q_0') \right\} dy}$$

Q', Q'B SON FUNCIONES DE VCB(Y). APROXIMANDO VCB(Y) POR UNA FUNCIÓN LINEAL DE Y, SE OBTIENE:

SIENDO:

 $\theta = \frac{\alpha_B}{2E_S} c_{ox}, f_{\mu} = V_{GS} - V_T + 2 \sqrt{\phi_B + V_{SB}} - \frac{1 - \delta}{2} V_{DS}$ LA DEPENDENCIA DE μ^* con V_{DS} complica el cálculo del limite

DE SATURACIÓN.

UNA APROXIMACIÓN MÁS SIMPLE ES:

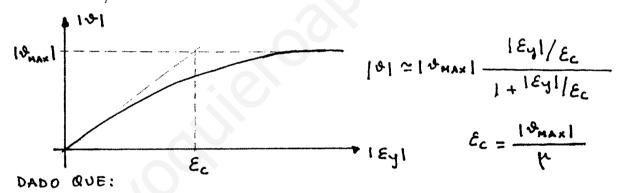
SIENDO MO, O Y DO PARAMETROS EMPÍRICOS.

DEPENDENCIA CON EL CAMPO HORIZONTAL.

LLAMAR V_{MAX} A LA VELOCIDAD MÁXIMA DE LOS PORTADORES EN EL CANAL (MUY SIMILAR PARA ELECTRONES Y HUECOS EN SI).

OCURRE QUE UNA JEZ QUE LOS PORTADORES ALCANBA V_{MAX},

ULTERIORES CAMBIOS DE VAS, OSEA EN EL CAMPO HORIZONTAL EN
EL CANAL, NO AFECTAN AL FUNCIONAMIENTO DEL DISPOSITIVO.



SE TIENE :

LUEGO:

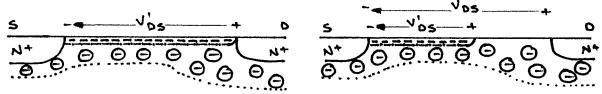
)

$$f_h = \frac{1}{1 + \frac{vos}{L E_c}}$$

MODULACIÓN DE LA LONGITUD DEL CANAL.

"EN SATURACIÓN, LAS CURVAS IDS-VOS NO TIENEN PENDIENTE NULA".

SE MODELA UTILIZANDO UNA INTERPRETACIÓN MUY SIMPLE DE LO QUE SUCEDE EN SATURACIÓN.



- EN SATURACIÓN, LA ZONA ANEXA AL DRENADOR SE VALÍA DE PORTA-DORES
- EL CANAL SOLO PUEDE SOPORTAR VAS .
- DESDE EL FINAL DEL CANAL HASTA EL DRENADOR CAE V_{BS} V_{DS} , V_{BS} V_{BS

RESOLVIENDO LA ECUACIÓN DE POISSON SE PUEDE CALCULAR:

$$\Delta L = \sqrt{\frac{2 \epsilon_S}{q N_A}} \left\{ \sqrt{\phi_O + (V_{OS} - V_{OS})} - \sqrt{\phi_O} \right\}$$

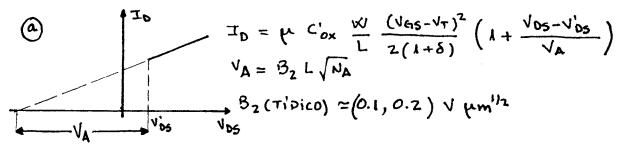
$$\phi_{D} = \frac{\epsilon_{S} \epsilon_{i}^{2}}{2q N_{A}}$$

CON É, EL VALOR DEL CAMPO A LA IZQUIERDA DE LA REGIÓN EMPOBRE-CIDA.

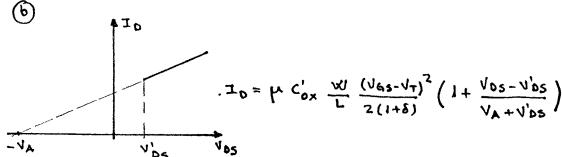
EL EFECTO SOBRE LA INTENSIDAD DE DRENADOR EN SATURACIÓN ES:

$$I_D = \mu C'_{ox} \frac{W}{L} \frac{(V_{GS} - V_T)^2}{2(1+\delta)} \frac{1}{1 - \frac{\Delta L}{L}}$$

OTROS MODELOS MAS SIMPLES:



EL PUNTO DE INTERSECCIÓN DE LAS RECTAS DE PENDE DE VES.



EL PUNTO DE INTERSECCIÓN NO DEPENDE DE VES. SITUACIÓN TÍPICA PARA HUCHOS PROCESOS TECNOLÓGICOS.

PARA EVITAR LA DISCONTINUIDAD DE <u>d'ID</u> AL PASAR A SATURACIÓN, SE REDEFINE LA FRONTERA:

$$\frac{1}{10} = \begin{cases}
\frac{1}{10} = \mu C_{0x} \frac{w}{L} \left[\left(V_{6s} - V_{T} \right) V_{0s} - \frac{1}{2} (1+\delta) V_{0s}^{2} \right], V_{0s} \leq V_{0s}^{2} \\
\frac{1}{10} = \frac{1}{10} \left(V_{0s}^{2} \right) \left(1 + \frac{V_{0s} - V_{0s}^{2}}{V_{A} + V_{0s}^{2}} \right), V_{0s} > V_{0s}^{2}
\end{cases}$$

$$\frac{d I_{01}}{d V_{0s}} \left| V_{0s}^{2} - \frac{d I_{02}}{d V_{0s}} \right|_{V_{0s}^{2}}$$

OTROS EFECTOS DE SEGUNDO ORDEN.

VARIACIÓN DE LA TENSIÓN UMBRAL CON PEQUEÑAS GEOMETRÍAS.

$$\Delta V_{T_L}|_{CANAL CORTO} = -2 \alpha_1 \frac{\epsilon_S}{\epsilon_{ox}} \frac{t_{ox}}{L} \left[\left(\phi_B + V_{SB} \right) + \alpha_2 V_{DS} \right]$$

X1 , X2 SE DETERHIDAN EMPÍRICAMENTE.

×3 SE DETERMINA EMPIRICAMENTE

SUPONIENDO PEQUEÑOS AUTL Y AUTW :

$$\widetilde{V}_{T} \simeq V_{T} \Big|_{(W_{1}L) \text{ GRANDES}} + \Delta V_{TL} + \Delta V_{TW}$$

LA TENSION UMBRAL DUMENTA SI:

· AUMENTA EL DOPADO DEL SUBSTRATO, EL ESPESOR DEL ÓXIDO O LA LONGITUD DEL CANAL, [UNIÓN METALÓR GICA.

· SI DISMINUYE LA ANCHURA DEL CANAL O LA PROFUNDIDAD DE LA

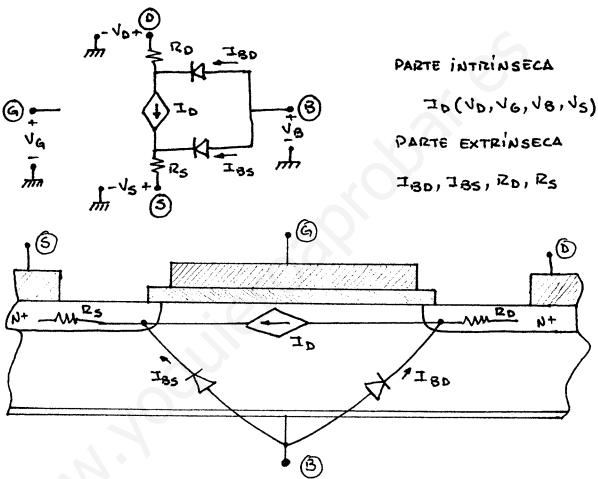
MODELOS EN GRAN SEÑAL DEL TRANSISTOR MOS. MODELOS DE SPICEZ.

EL MODELADO EN GRAN SEÑAL COMPRENDE DOS ASPECTOS:

- COMPORTAMIENTO ESTÁTICO
- COMPORTA MIENTO TRANSITORIO.

COMPORTAMIENTO ESTATICO

EN SPICEZ SE USA EL SIGUIENTE MODELO DE CIRCUITO:



EN SPICEZ SE USAN TRES NIVELES DE MODELO QUE SE DIFERENCIAN EN \mathbb{I}_{D} :

NIVEL 1: MODELO DE SHICMAN-LIODGES

WIVER 2 : CONSIDERS EFECTOS DE SE GUNDO DROEN

NIVEL 3: MODELD SEMIEMPIRICO.

COMPORTAMIENTO DINÁMICO

ESTÁ REGIDO POR LOS CAMBIOS QUE SE PRODUCEN EN LA CAR-GA ALMACENADA EN LAS DISTINTAS REGIONES DEL DISPOSITIVO AL VARIAR LA TENSIÓN.

EL CASO CUASIESTÀTICO PUEDE MODELARSE CONSIDERANDO POR SEPARADO EL COMPORTA MIENTO INTRÍNSECO Y EL EXTRÍNSECO.

COMPORTAMIENTO EXTRINSECO.

SE MODELA MEDIANTE CONDENSADORES NO LINEALES. DOS TIPOS:

CONDENSABORES DE UNION

CONDENSADORES DE SOLDPAMIENTO

CONDENSADORES DE UNIÓN.

MODELAN LAS VARIACIONES DE CARGA ASOCIADAS A LAS REGIONES
EMPOBRECIDAS PRÓXIMAS A LAS DIFUSIONES DE FUENTE Y DRENADOR.
EN SPICEZ SE MODELAN MEDIANTE CAPACIDADES (dQ/du) NO-LINEALES
Y SE CONSIDERAN SEPARADAMENTE LAS ZONAS LATERALES Y EL FONDO DE LOS CAJONES DE DIFUSIÓN

$$C_{GX} = \frac{C_{j} A_{X}}{\left(1 - \frac{V_{GX}}{P_{G}}\right)^{M_{J}}} + \frac{C_{j} s_{W} P_{X}}{\left(1 - \frac{V_{GX}}{P_{G}}\right)^{M_{j}} s_{W}}, \quad V_{GX} \leq F_{c} P_{B}$$

SIENDO Cj. PB. MJ. MJSW PARAMETROS DEL MODELO DEL MOS EN SPICE 2.

HAY UNA EXPRESIÓN DISTINTA PARA POLARIZACIÓN DI RECTA.

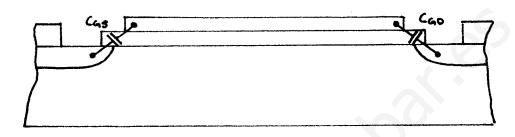
CAPACIDADES DE SOLAPAMIENTO.

SON FRUTO DEL SOLAPAMIENTO QUE SE PRODUCE ENTRE LOS MATERIA.

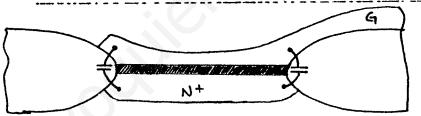
LES ASOCIADOS A LOS DISTINTOS TERMINALES DEL MOS. SON CA
PACIDADES LINEALES.

DE ESTAS SE PUEDEN DISTINGUIR DOS TIPOS:

ASOCIADAS A LAS DIFUSIONES LATERALES



ASOCIADAS A LA INVASIÓN DE ÓXIDO GRUESO



ESTAS NO SE MODELAN EN SPICEZ

COMPORTAMIENTO INTRINSECO

PARA MODELAR ADECUADAMENTE EL COMPORTAMIENTO TRANSITORIO EN GRAN SEÑAL ES PRECISO CONSIDERAR DIRECTAMENTE LAS CARGAS DE LA ESTRUCTURA MOS.

$$q_{1} = f_{1} \left[\vartheta_{D}(t), \vartheta_{G}(t), \vartheta_{B}(t), \vartheta_{S}(t) \right]$$

$$q_{G} = f_{G} \left[\vartheta_{D}(t), \vartheta_{G}(t), \vartheta_{B}(t), \vartheta_{S}(t) \right]$$

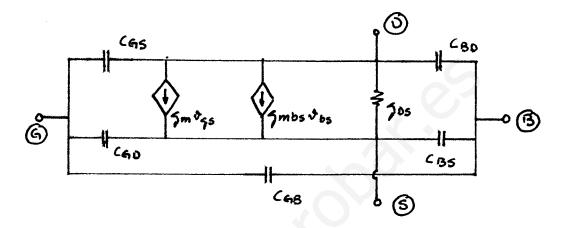
$$q_{B} = f_{B} \left[\vartheta_{D}(t), \vartheta_{G}(t), \vartheta_{B}(t), \vartheta_{S}(t) \right]$$

$$i_6(t) = \frac{dq_6}{dt}$$
, $i_8(t) = \frac{dq_8}{dt}$, $i_8(t) + i_5(t) = \frac{dq_1}{dt}$

MODELO EN PEQUEÑA SEÑAL DEL HOS.

TAMBIEN ESTE MODELO CONTIENE UNA PARTE EXTRÍNSECA (QUE SE DEDUCE DE LA CORRESPONDIENTE PARTE DEL MODELO EN GRAN SEÑAL) Y UNA PARTE INTRÍNSECA.

ASÍ, EL MODELO PARA LA PARTE INTRÍNSECA ES:



CON:

$$\Im m = \frac{\partial J_D}{\partial V_{6S}} \left| Q \right|
\Im mbs = \frac{\partial J_D}{\partial V_{8S}} \left| Q \right|
\Im s = \frac{\partial J_D}{\partial V_{0S}} \left| Q \right|$$

$$C_{6S} = -\frac{\partial Q_G}{\partial V_S} \left| Q \right|
C_{6D} = -\frac{\partial Q_G}{\partial V_D} \left| Q \right|$$

$$C_{8S} = -\frac{\partial Q_B}{\partial V_S} \left| Q \right|$$

$$C_{6S} = -\frac{\partial Q_G}{\partial V_S} \left| Q \right|$$

$$C_{6S} = -\frac{\partial Q_G}{\partial V_S} \left| Q \right|$$

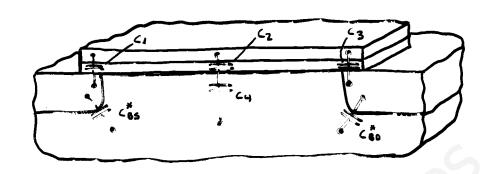
$$C_{6S} = -\frac{\partial Q_G}{\partial V_S} \left| Q \right|$$

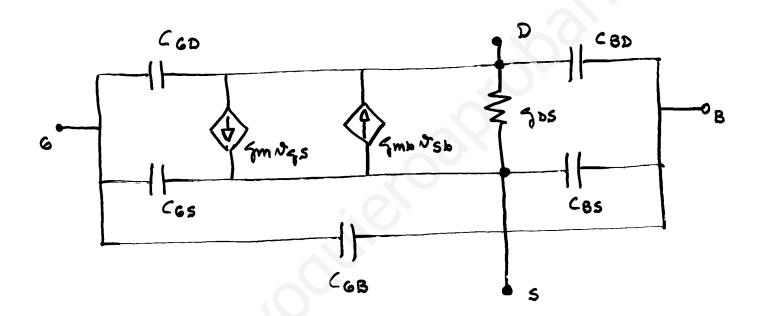
TODOS LOS PARÁMETROS DE PEQUEÑA SEÑAL DEPENDE DEL PUNTO DE OPERACIÓN (PUNTO Q) Y DE LA EXPRESIÓN CONCRETA QUE SE USE PARA LAS CARGAS Y LAS INTENSIDADES.

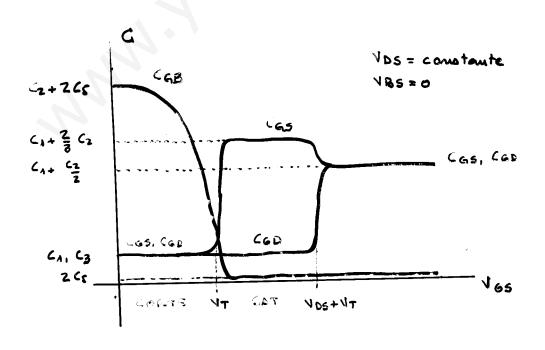
RELACIONES DE INTERES:

$$\frac{C8S}{CGS} \sim \frac{3mbs}{3m}, \quad \frac{C8D}{CGO} \sim \frac{3mbs}{3m}$$

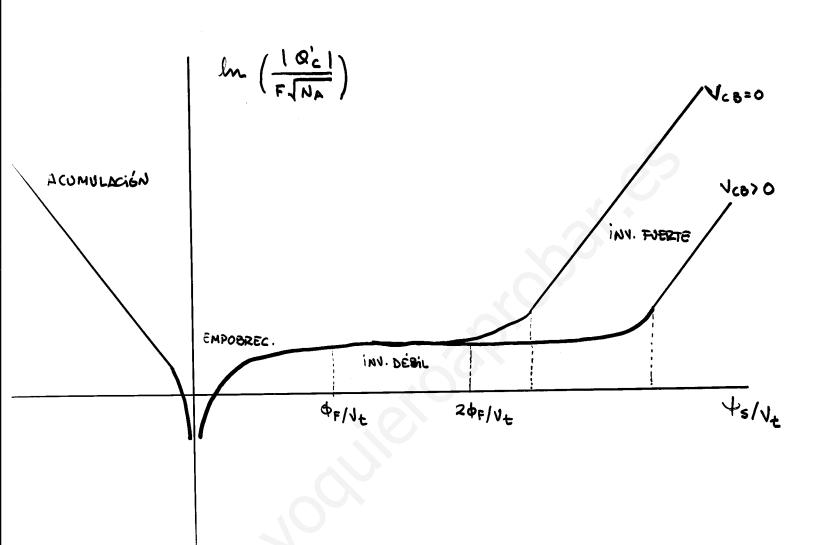
MODELO DINÁMICO EN PEQUEÑA SEÑAL







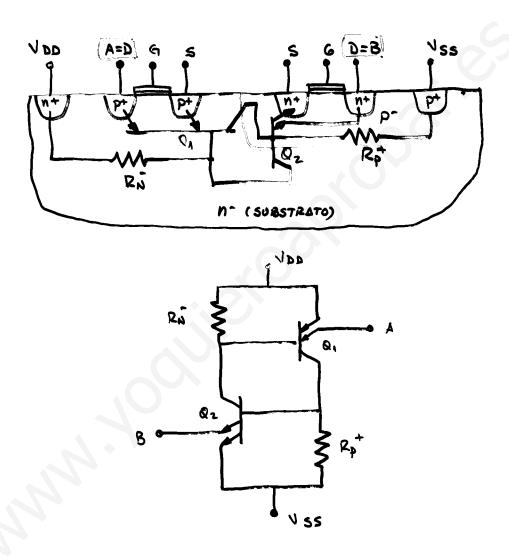
VARIACIÓN DE LA CARGA CON 45



LATCH - UP

EL "LATCH-UP" EN CIRCUITOS INTE GRADOS SE DEFINE COMO UN ESTADO DE ALTA CORRIENTE EN UNA SITUACIÓN DE TENSIONES DE EXCITACIÓN BAJAS.

PUEDE INICIARSE POR VARIOS MECANISMOS, ENTRE ELLOS LA RE-TIFICACIÓN CONTROLADA POR SILICIO (SCR).



ES UN MECANISMO NO DESENDO. EXISTEN DIVERSAS TÉCNICAS PARA MINIMIZAR SUS EFECTOS.