TEMA 2. DETERMINANTES.

Determinante de orden 2 y orden 3:

Para una matriz cuadrada de orden 2 $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, se llama determinante de A al número real:

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Para una matriz cuadrada de orden 3 $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, se llama determinante de A al número

real:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} - a_{13} \cdot a_{22} \cdot a_{31} - a_{12} \cdot a_{21} \cdot a_{33} - a_{11} \cdot a_{23} \cdot a_{32}$$

Regla de Sarrus:

SUMANDOS CON SIGNO -

Definición general de un determinante:

Permutaciones de los elementos $1, 2, 3, \ldots, n$ son las posibles ordenaciones que podemos hacer con n elementos. En total tenemos n! Permutaciones.

Llamamos a la permutación 1, 2, 3, ..., *n* permutación principal. Se dice que dos elementos forman una inversión cuando el orden en el que aparecen dentro de la permutación no coincide con el orden de la permutación principal.

Ejemplo: Para *n*=4: la permutación principal es: 1 2 3 4 La permutación 1 3 2 4 tiene una inversión 3 2 La permutación 1 4 3 2 tiene tres inversiones: 4 3, 4 2, 3 2

Se denomina **índice** de una permutación, y se designa $i(\sigma)$ al número de inversiones que presenta dicha permutación σ .

Ejemplo: La permutación 1 4 3 2 tiene índice 3.

Tenemos dos clases de permutaciones:

- Permutaciones de clase par.
- Permutaciones de clase impar.

Efectuamos una **trasposición** cuando cambiamos entre sí dos elementos de dicha permutación. Cuando en una permutación se trasponen dos elementos la permutación cambia de clase:

Ejemplo: 1 3 4 2 es de clase par (Inversiones: 3 2, 4 2)

Si trasponemos 4 y 2:

1 3 2 4 es de clase impar (Inversión: 3 2)

Luego, hay el mismo número de permutaciones pares que impares.

Definición de determinante:

Para una matriz cuadrada de orden
$$n$$
, $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}$, se llama determinante al número real:

número real:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix} = \sum_{\sigma \in S_n} (-1)^{i(\sigma)} \cdot a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \dots \cdot a_{n\sigma(n)} \quad \text{donde} \quad S_n \quad \text{es el conjunto de las}$$

permutaciones de los elementos 1, 2, ..., n.

Observaciones:

- El desarrollo de un determinante se compone de sumandos formados por factores elegidos entre los elementos de la matriz, de forma que en cada sumando aparece uno y sólo un elemento de cada fila y de cada columna.
- A cada sumando o término del desarrollo le antecede el signo + ó según las permutaciones de filas y columnas sean de la misma clase o distinta.
- En los desarrollos, los factores que aparecen en los sumandos suelen ordenarse por filas, y por tanto, el signo del factor depende de la clase de la permutación de la columna.
- El número de sumandos que tiene el desarrollo de un determinante de orden n es n!, de los cuales la mitad va precedida de signo + y la otra mitad de signo -.
- La utilización práctica de esta definición presenta dificultades y es muy laboriosa.

Propiedades de los determinantes:

- 1. El determinante de una matriz cuadrada es igual al determinante de su matriz traspuesta: $|A^t| = |A|$.
- 2. Si los elementos de una fila (o columna) de una matriz se multiplican por un número, el determinante de la matriz queda multiplicado por dicho número.

$$det(F_1, F_2, ..., k \cdot F_i, ..., F_n) = k \cdot det(F_1, F_2, ..., F_i, ..., F_n)$$

$$det(C_1, C_2, ..., k \cdot C_i, ..., C_n) = k \cdot det(C_1, C_2, ..., C_i, ..., C_n)$$

3. Si los elementos de una fila (o columna) de una matriz se pueden descomponer en dos

sumandos, su determinante es igual a la suma de dos determinantes que tienen iguales todas las filas (o columnas), excepto dicha fila (o columna) cuyos elementos pasan, respectivamente, a cada uno de los determinantes:

$$\det(F_1, F_2, ..., F_k + F'_K, ..., F_n) = \det(F_1, F_2, ..., F_k, ..., F_n) + \det(F_1, F_2, ..., F'_k, ..., F_n)$$

4. El determinante del producto de dos matrices cuadradas coincide con el producto de los determinantes de ambas matrices:

$$|A \cdot B| = |A| \cdot |B|$$

5. Si en una matriz cuadrada se permutan dos filas (o columnas) su determinante cambia de signo.

$$det(F_1, F_2, ..., F_i, ..., F_j, ..., F_n) = -det(F_1, F_2, ..., F_i, ..., F_i, ..., F_n)$$

- 6. Si una matriz cuadrada tiene dos filas (o columnas) iguales, su determinante es cero.
- 7. Si una matriz cuadrada tiene dos filas (o columnas) proporcionales su determinantes es cero.
- 8. Si los elementos de una fila (o columna) de una matriz cuadrada son combinación lineal de las filas o columnas restantes, es decir, son el resultado de sumar los elementos de otras filas (o columnas) multiplicadas por números reales, su determinante es cero.
- 9. Si a los elementos de una fila (o columna) de una matriz cuadrada se le suma una combinación lineal de otras filas (o columnas) su determinante no varía.
- 10. Si un determinante tiene una fila (o columna) de ceros, el determinante es nulo.

Cálculo de un determinante por los elementos de una fila o columna:

Menor complementario: Para una matriz cuadrada de orden n $A=(a_{ij})$, se llama menor complementario del elemento a_{ij} , y lo representamos α_{ij} , al determinante de la matriz de orden n-1, que resulta de suprimir la fila i y la columna j.

Adjunto: Para una matriz cuadrada de orden n, $A=(a_{ij})$, se llama adjunto del elemento a_{ij} , y lo representamos A_{ij} , al menor complementario de a_{ij} , anteponiendo el signo + ó- según la suma de los subíndices i+j sea par o impar: $A_{ij}=(-1)^{i+j}\cdot\alpha_{ij}$.

Matriz Adjunta: La matriz adjunta de una matriz A es la matriz en la que cada elemento es el adjunto respectivo. La escribiremos Adj(A). Por ejemplo, para una matriz cuadrada de orden 3 sería:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad Adj(A) = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}$$

Desarrollo de un determinante por adjuntos: El determinante de una matriz cuadrada de orden n es igual a la suma de los productos de los elementos de una fila (o columna) cualquiera por sus

respectivos adjuntos.

Desarrollo por los elementos de la fila *i*:

$$|A| = a_{il} \cdot A_{il} + a_{i2} \cdot A_{i2} + ... + a_{in} \cdot A_{in}$$

Desarrollo por los elementos de la columna *j*:

$$|A| = a_{1j} \cdot A_{1j} + a_{2j} \cdot A_{2j} + ... + a_{nj} \cdot A_{nj}$$

Método de Chio: El mejor procedimiento para calcular determinantes de orden mayor que tres, sería hacer ceros a los elementos de una fila o columna, previo al cálculo del determinante.

Matriz Inversa:

Sabemos que la **matriz inversa** de una matriz cuadrada A de orden n es la matriz A^{-1} de orden nque verifica:

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$

Para calcular la matriz inversa de una matriz A, utilizaremos la fórmula:

$$A^{-1} = \frac{1}{|A|} \cdot (Adj(A))^{t}$$

Una matriz tiene inversa si y solo si su determinante es distinto de cero.

Propiedades:

- 1. Si existe A^{-1} , es única. 2. $(A^{-1})^{-1} = A$. 3. $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$

- 4. $|A^{-1}| = \frac{1}{|A|}$

Cálculo del rango de una matriz por determinantes:

Menor de orden k: Sea A una matriz de dimensión mxn, se llama menor de orden k ($k \le m$, $k \le n$), al determinante de una matriz cuadrada de orden k que está formada por los elementos pertenecientes a k filas y k columnas de A.

Rango de una matriz: Se llama rango o característica de una matriz al orden del mayor menor no nulo que podemos obtener de dicha matriz.

Este orden del mayor menor no nulo, coincide con el número de filas o columnas linealmente independientes que posee la matriz (definición dada en el tema anterior).