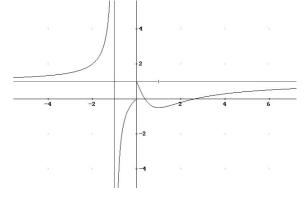
EXAMEN FINAL Matemáticas PENDIENTES 1º BT CCSS

- 1. Clasifica los siguientes números reales en racionales e irracionales. Halla también la fracción generatriz de los números racionales: (1 p)
- a)0′494949.
- b)5.38
- c)0′141144111444....d)0'49555...
- f)2^{383383338...} h)3+ π g


- 2.-a) Racionaliza a) $\frac{3}{\sqrt{5}}$ b) $\frac{\sqrt{2}}{1-\sqrt{3}}$ c) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ (1. 5 p)
 - b) Opera y simplifica todo lo posible las siguientes expresiones: (1 p +1.5 p +2 p)
- i) $\frac{27^{-4} \cdot (1/3)^2}{(3^2)^{-3} \cdot 3^0 \cdot 9^{-1}}$ ii) $\frac{1}{10} \frac{\sqrt[3]{0,01}}{\sqrt[4]{1}}$ iii) $\sqrt{5} \frac{1}{2} \sqrt{125} + \frac{\sqrt{180}}{5} \frac{5}{3} \cdot \sqrt{20}$
- 3.-a) Resuelve las siguientes ecuaciones:
 - i) $\frac{3x-11}{20} \frac{5x-1}{14} = \frac{x-7}{10} \frac{5x-6}{21}$ (1.5 p) ii) $3-x = \sqrt{9-x^2}$ (1 p)

- 20 14 10 21 iii) $3^{x-1} = 21$ (1 p) iv) $\log x = 1$ (1 p) v) $5^{2x} 30.5^{x} + 125 = 0$ (1 p) vi) $\log_{x} 9 = 2$ (1 p)

- b) Resuelve y clasifica el siguiente sistema
- $\int x + 2y 3z = 3$ $\begin{cases} 3x + y + 5z = 4 \end{cases}$
- 4.-Dibuja la gráfica de la siguiente función definida a trozos:

$$f(x) = \begin{cases} 2x^2 + 4x & si \quad x < 0 \\ 2 & si \quad x = 0 \\ -x + 2 & si \quad x > 0 \end{cases}$$
 (3 p)

- 5.-Consideremos la gráfica de la figura. Halla
- $\lim_{x\to 0^+} f(x); \quad \lim_{x\to 0^-} f(x); \quad \lim_{x\to -1^+} f(x); \quad \lim_{x\to -1^-} f(x); \lim_{x\to -\infty} f(x);$
- f(0). Estudia además la continuidad de dicha función en los puntos x = 0 y x = -1 (2.5 p)
- 6.-a) Halla la ecuación de la recta tangente a la función
- $f(x) = \frac{2x-1}{x}$ en el punto de abscisa 5. (1 p)
- b)Calcula los siguientes limites de funciones: (1.5 p)
- i) $\lim_{x \to \infty} \frac{x^2 3x}{2x^2 5}$ ii) $\lim_{x \to \infty} \frac{2x^2 x^3}{3x^2 5}$ iii) $\lim_{x \to 1} \frac{3x^2 2x 1}{x^2 1}$

- 7.-Para la siguiente función, estudia su dominio, puntos de corte con los ejes, simetrías, asíntotas, intervalos de crecimiento y decrecimiento, coordenadas de los máximos y mínimos locales y representación gráfica : $f(x) = \frac{2}{x^2 + 1}$ (5 p)
- 8.- Consideremos la siguiente distribución de frecuencias:

Intervalo	[30, 40)	[40,50)	[50. 60)	[60,70)	[70,80)	[80, 90)	[90,100)
F.absolutas	6	14	19	29	14	9	6

- a)Escribe la tabla de frecuencias para esta distribución. (Marcas de clase, frecuencias relativas. b)Haz un diagrama de sectores. Indica claramente los grados que le asocias a cada intervalo. c)Añade a la tabla una columna con los porcentajes correspondientes a cada intervalo. d)¿Qué porcentaje de la población tiene un valor inferior a 60? ¿ y superior a 80? e)Construye un histograma de frecuencias absolutas, Dibuja el correspondiente polígono de frecuencias. (5 p)
- 9- Hecha una encuesta preguntando a 100 amas de casa lo que les acostumbra a durar una pastilla de jabón de una determinada marca se han obtenido los siguientes resultados:

Duración (días)	[5, 10)	[10, 15)	[15,20)	[20,24)	[25,30)
frecuencia	22	44	17	9	8

- Calcula la duración media de una pastilla de jabón, su varianza y su desviación típica. Hazlo sin calculadora y comprueba el resultado usando calculadora. (2 p)
- 10.-En una distribución bidimensional, se cumple que: $\overline{x} = 195$; $\overline{y} = 92$; $\sigma_x = 6.06$; $\sigma_y = 6.56$; $\sigma_{xy} = 37.6$. Se pide: a) Ecuación de la recta de regresión y sobre x b)Hallar el coeficiente de correlación c)Si x vale 208, ¿se puede predecir y? En caso afirmativo, haz dicha predicción. (3 p)