Movimiento circular uniformemente acelerado (m.c.u.a.)

		·
·	CD-ROM de 6 cm de radio gira a una velocidad a) El módulo de la aceleración angular. b) Las vueltas que da antes de detenerse. c) El módulo de la velocidad angular para t=10 s	Resultado: α = -5.55 π rad/s ² Resultado: θ = 625 π rad = 312.5 vueltas
,	coche con unas ruedas de 30 cm de radio acelera a) El módulo de la aceleración angular. b) Las vueltas que da en ese tiempo. c) El módulo de la velocidad angular para t=3 s d) El módulo de la aceleración tangencial e) El módulo de la aceleración normal para t= 5 s	Resultado: α = 18.52 rad/s² Resultado: θ = 231.48 rad = 36.84 vueltas Resultado: ω = 55.56 rad/s Resultado: a_T = 5.55 m/s²
cm, calc	cular:	Resultado: $ω$ = $10π$ rad/s Resultado: a_T = 0.78 m/s ²
,	centrifugadora esta girando a 1500 r.p.m., se de a) Su aceleracion angular α→ b) Las vueltas que da hasta detenerse.	sconecta y se detiene en 10 s. Calcular Resultado: α = -15.70 rad/s² Resultado: θ =125 vueltas
	disco que está girando a 2 vueltas/s, frena y se det a) Su aceleración angular. b) Las vueltas que da hasta detenerse. c) La velocidad del borde del disco para t=2 s si e	Resultado: α =- $4\pi/9$ rad/s ² Resultado: θ =9 vueltas
tarda en	amos caer un yo-yo y pasa de no girar a hacerlo bajar. Calcula: a) Su aceleración angular. b) Las vueltas que dará en los dos segundos.	a 3 vueltas por segundo en los 2 segundos que Resultado: α = 3 π rad/s² Resultado: θ = 6π rad = 3 vueltas
a) Su ac b) Su ve	a centrifugadora de 15 cm de radio acelera de 0 a releración angular. elocidad angular cuando t = 8 s rueltas que da en los 12 s del arranque.	2 700 r.p.m. en 12 s. Calcula: Resultado: α = 6,11 rad/s 2 Resultado: ω = 48,9 rad/s Resultado: θ = 440 rad = 70,0 vueltas
		io, está inicialmente detenido. Al encenderlo, acele- el movimiento es uniformemente acelerado, calcu-
-	Su aceleración angular. Las vueltas que da durante los 8 s en que gana ve	Resultado: $\alpha = \pi/2 \text{ rad/s}^2$ locidad de giro. Resultado: $\theta = 16\pi \text{ rad} = 8 \text{ vueltas}$
a) Su ac b) Su ve	ventilador de 10 cm de radio que estaba detenido releración angular, supuesta constante. elocidad angular y lineal para t= 3 s ueltas que da en los 5 s del arranque.	p, arranca hasta girar a 100 r.p.m. en 5 s. Calcula: Resultado: α = 10 π /3 rad/s² Resultado: ω = 2 π /3 rad/s, v =0,62 m/s Resultado: θ = 8,3 π rad = 4,15 vueltas
	ventilador de 20 cm de radio que giraba a 600 r. _] releración centrípeta en el borde de su aspa antes	

c) Su velocidad angular para t=3s . Resultado: $\omega=12,5\pi$ rad/s d) Las vueltas que da hasta detenerse. Resultado: $\theta=80\pi$ rad = 40 vueltas

b) Su aceleración angular supuesta constante.

Resultado: α = -20 π /8 rad/s²

Un CD-ROM de 6 cm de radio gira a una velocidad de 2500 rpm. Si tarda en pararse 15 s, calcula:

a) El módulo de la aceleración angular.

Resultado: α = -5.55 π rad/s²

b) Las vueltas que da antes de detenerse. Resultado: θ = 625 π rad = 312.5 vueltas

c) El módulo de la velocidad angular para t=10 s Resultado: ω = 27.77 π rad/s

Hipótésis y models

- montretto ciraler mijorhenerte acelerado

Esquella

Funciones

0 = 1 at2 + wot + 0.

w= at+wo

Wo = 2500 welf-s. I win 2TT red = 83,33TT rad/s

arestiones

Sabernos que se detiene (w=0) para t=155 luego, cuplicandolo a la fracción de velocidad augular.

a) w=x++wo

0 = x. 15 + 83,33TT / x = -83,33TT = -5,55TT rad/s2

b) Tarda en detenerse 155, luego aplicandolo a la Juncioù angular:

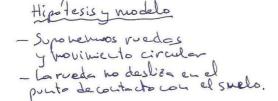
0 = ½(-5,55π). 15²+ 83,33π. 15 +0 = = -624,4 π + 1250π = 625π rad = 312,8 uveltes

e) Aplicando la Junción de valocidad augular para t = 105:

W=-5,55tT-10+83,33TT=27,78TT rod/s

Un coche con unas ruedas de 30 cm de radio acelera desde 0 hasta 100 km/h en 5 s. Calcular:

a) El módulo de la aceleración angular.


Resultado: α = 18.52 rad/s²

- b) Las vueltas que da en ese tiempo.
- Resultado: θ = 231.48 rad = 36.84 vueltas
- c) El módulo de la velocidad angular para t=3 s
- d) El módulo de la aceleración tangencial
- e) El módulo de la aceleración normal para t= 5 s

Resultado: ω= 55.56 rad/s

Resultado: a_T = 5.55 m/s²

Resultado: $a_N = 2572 \text{ m/s}^2$

Esque 0,30m = 100 hou/h

Funciones $|\vec{a}_{c}| = |\vec{b}|^{2}$ $|\vec{r}|$ $0 = \frac{1}{2} \times t^{2} + \omega_{0}t + \delta_{0} \quad \omega_{0} = 0 \quad y \quad \delta_{0} = 0$ $|\vec{b}| = |\vec{\omega}| \cdot |\vec{r}|$

(mestiones

respecto d'éje de la rueda es de loo ku/h. Por tanto:

V= 100 (len). 1h 1000 m = 27,78 m 5

 $|\vec{v}| = |\vec{v}| |\vec{r}|$, $w = \frac{v}{v} = \frac{27,78}{0,30} = 92,59 \text{ rad}$ $w = \alpha t + w_0$; $92,59 = \alpha.5 + 0$; $\alpha = \frac{92.59}{52} = 18,52 \text{ rad}$ b) Apricanos la Ponción del ángulo recorrido a t = 5.5

0 = 1 xt2 + wot + 0 = 1 18,52.52 + 0+ 0 = 231,48 rad

231,48 (rad). 1 volta = 36,84 voltas

c) Aplicamos la Junior de velocidad augular para t = 35

W= 18,52.3+0= 55,56 rads

d como conocemos d = 18,52 rad/s² y r = 0,30 h :

a_ = dxr ; |a_1 |= 18,52.0,30 = 5,56 4/56

e) Calculanos u para t=55, a continuación ven ese momento y con ella calculanos (an)

$$w_5 = 18,52.5 = 92,6 \text{ rad/s}$$
 $|v_5| = 92,6.0,30 = 22,28 \text{ m/s}$

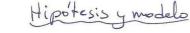
Una centrifugadora pasa de estar detenida a girar a 450 r.p.m. en 15 s. Si el radio del tambor es de 25 cm, calcular:

a) El módulo de la aceleración angular.

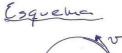
b) Las vueltas que da en ese tiempo.

c) El módulo de la velocidad angular para t=10 s

d) El módulo de la aceleración tangencial


e) El módulo de la aceleración normal para t=15 s Resultado: a_N= 555.2 m/s²

Resultado: $\alpha = \pi \text{ rad/s}^2$


Resultado: θ = 112.5 π rad = 56.25 vueltas

Resultado: ω = 10 π rad/s

Resultado: a_T = 0.78 m/s²

- Movimiento ciralar uniformemente a celerado - Objetociralar y sin groson

Funcibles

$$0 = \frac{1}{2} \times t^{2} + \omega_{0} t + 0_{0}$$
 $w = x t + \omega_{0}$
 $w = 0$
 $v = 0$
 $v = 0$
 $v = 0$

(mestiones

a) Para t = 155 W = 450 rpm; W = 450 vueltas. I min 2TT rad = 15TT rad puis 605 1 vuelta 5

w= x++w0 15TT= x.15+0; d= 15T= TT red/s2 b) Aplicando la Junción de angulo recorrido para t = 15 5 O= - π.152+0.t+0; O=112,5π rad = 56,25 Welles

c) Aplicando la función de velocided augular para t = 10s W= TT. 10+0 =10TT rad/s

d) |a" = |a||r) = TT. 0,25 = 0,78 m/s2

e) Parat=155, W= 15tt rad/s bego []= |w||= 15tt (rad). 0,25 (m)

 $|\vec{a}| = \frac{|\vec{v}|^2}{|\vec{v}|} = \frac{(15\pi \cdot 0.25)^2}{6.25} = 555.2 \text{ m/s}^2$

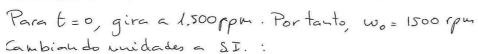
Una centrifugadora esta girando a 1500 r.p.m., se desconecta y se detiene en 10 s. Calcular

a) Su aceleracion angular α^{\Rightarrow}

Resultado: α = -15.70 rad/s²

b) Las vueltas que da hasta detenerse.

Resultado: θ =125 vueltas


Hipótésis y models

- montiento ciraler mijorhenerte acolerado

Functones

0 = 1 at2 + wot + 00

w= out + wo

arestione,

a) Si frena hasta pararse unifornemente, tenemos un movimiento circular uniformemente acelerado, y portanto:

W = xt + wo (función de velocidad augular)

O = 1 xt + wot + 0 (función de dugulo descrito)

Cuardo t = 10 spre detiche luego w= 0. Sustituzendo wo, wy t en la flubación de velocidad angular:

$$O = \alpha \cdot 10 + 5$$
 ott ; -5 ott = $\alpha \cdot 10$; $\alpha = -\frac{5}{10} = -5$ trad/s² = -15 , 70 rad/s² Rs negativa porque frena.

b) $5ustituyendo les dates conocidos en la funcion de cíngulo: <math display="block">0 = \frac{1}{2}(-5\pi) \cdot 10^2 + 50\pi \cdot 10 + 0 =$

= -250T + 500T = 250T rad = 785,4 rad. Cambiando unidades para calcular las uneltas:

Un disco que está girando a 2 vueltas/s, frena y se detiene en 9 s. Calcular:

a) Su aceleración angular rad/s²

Resultado: $\alpha = -4\pi/9$

b) Las vueltas que da hasta detenerse.

Resultado: θ =9 vueltas

c) La velocidad del borde del disco para t=2 s si el radio del disco es de 15 cm.

Resultado: v =1,46 m/s

Funciones y parametros $0 = \frac{1}{2} \alpha t^{2} + w_{0}t + 0$ $w = \alpha t + w_{0}$ $\overline{v} = \overline{w} \times \overline{r}$ $w = \frac{2 \text{ Viet } f_{0}}{3 \text{ Viet } t_{0}} = \frac{4 \pi \text{ rad}}{3 \text{ Viet } t_{0}}$ $r = 15 \text{ sec.} \quad \frac{1 \text{ Im}}{100 \text{ gen}} = 0,15 \text{ M}$ W9= 0

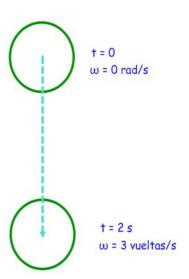
CUESTIONES

a) aplicando la Junción de la velocidad angular W= at + Wo 0 = a 9 + 4TT -411 = d.9 d = -411 rads = -411 rads 6)

Aplicamos la Junción del angulo y medimos los angulos desde la posición inicial (0=0). Calulamos pera t=95

0== at2 + wot + 0

O= 18 TI (sad). 1 welter = 9 vultes


c) Calculanos V con V= WxT pero necesitamos w pera t= 25 previouente W=xt+w6

Para el producto vectorial v=wx7 |v|=|w||v|sena = 28tr. 0,15. sey90 = 1,46 m/s Dejamos caer un yo-yo y pasa de no girar a hacerlo a 3 vueltas por segundo en los 2 segundos que tarda en bajar. Calcula:

- a) Su aceleración angular.
- b) Las vueltas que dará en los dos segundos.

Resultado: α = 3 π rad/s² Resultado: θ = 6 π rad = 3 vueltas

Suponemos un movimiento circular uniformemente acelerado

a) Calculamos d'en la suncion de velocidad angular para t=2

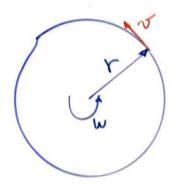
$$6\pi = \alpha \cdot 2 + 0$$

$$\alpha = \frac{6\pi}{2} = 3\pi \text{ (ad/s)}^2$$

b) Calculaturos las vieltes en la función del angulo
$$\theta = \frac{1}{2} 3\pi \cdot z^2 + 0.2 + 0 = 6\pi \text{ rad}$$

Una centrifugadores de 15 cm de radio acelera de 0 a 700 r.p.m. en 12 s. Calcula:

a) Su aceleración angular.


Resultado: α = 6,11 rad/s²

b) Su velocidad angular cuando t = 8 s

Resultado: ω = 48,9 rad/s

c) Las vueltas que da en los 12 s del arranque.

Resultado: θ = 440 rad = 70,0 vueltas

a) Suponemos a = constante

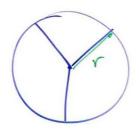
paraters Wz = 700 welfas. 271 rad. 1 min = 75,3 rad/5

Como w= xt+w. { w=73,3 ral/s paret=12s

73,3= a. 12+0; d= 73,3(rad/s) = 6,1 rad/s

b) Pare
$$t = 8 >$$
 $W = 6,11(\frac{r-1}{5!}).8(5)+0=48,9$ rad/s

0= = 6,11.12 = 440 rad


Las vueltas son 440 rad = 70,0 vueltas

Un ventilador de techo, que tiene aspas de 1 m de radio, está inicialmente detenido. Al encender-lo, acelera durante 8 s hasta que gira a 120 r.p.m. Suponiendo que el movimiento es uniformemente acelerado, calcula:

a) Su aceleración angular.

- Resultado: $\alpha = \pi / 2 \text{ rad/s}^2$
- b) Las vueltas que da durante los 8 s en que gana velocidad de giro.

Resultado: $\theta = 16\pi$ rad = 8 vueltas

Junciones

movimiento circular uniformemente acelerado

0= 1 at2+ wot +00

Parametros

 $W_0 = 0$ $\Theta_0 = 0$

perat=85, w=120pm

a) Cábulode la velocidad angular para t= 85

W8 = 120 vueltos. 1min. 2 Hrad = 4H rad/s

Cálculo de la authración angular d. $W=dt+W_0$ $4\pi=d\cdot 8+0$; $\alpha=\frac{4\pi}{8}=\frac{\pi}{2}$ rad/s²

b) Vueltas en 8 s:

$$\theta = \frac{1}{z} \frac{\pi}{z} 8^2 + 0.8 + 0 = 16 \text{ Trad}$$

$$16 \pi \text{ (rad)} \cdot \frac{1 \text{ volte}}{2 \pi \text{ (rad)}} = 8 \text{ voltes}$$

Un ventilador de 10 cm de radio que estaba detenido, arranca hasta girar a 100 r.p.m. en 5 s. Calcula:

a) Su aceleración angular, supuesta constante.

Resultado: $\omega = 2\pi/3$ rad/s, v =0,62 m/s

Resultado: α = 10 π /3 rad/s²

b) Su velocidad angular y lineal para t= 3 s

c) Las vueltas que da en los 5 s del arranque.

Resultado: $\theta = 8.3\pi$ rad = 4.15 vueltas

Junciones
$$\begin{array}{ll}
O = \frac{1}{2}\alpha t^2 + w_0 t + \theta_0 \\
W = \alpha t + W_0
\end{array}$$

$$\begin{array}{ll}
V = W \\
V = W
\end{array}$$

$$\begin{array}{ll}
Parcinetros \\
W = \frac{2}{3}T\Gamma rad/s^2 \\
W_0 = 0 \\
V = W$$

$$\begin{array}{ll}
V = W \\
V = W
\end{array}$$

Arad=2TTrad

Sustitugendo:

b)
$$w = \alpha t + w_0 = \frac{2}{3} \pi (\frac{r_{ol}}{s^2}) \cdot 3(s) + 0 = 2\pi \tau \cdot r_{ol}/s$$

 $v = w \cdot r = 2\pi \tau \cdot 0, 1 = 0, 62 \text{ m/s}$

Un ventilador de 20 cm de radio que giraba a 600 r.p.m., se desconecta y se detiene en 8 s. Calcula:

a) La aceleración centrípeta en el borde de su aspa antes de empezar a detenerse.

Resultado: a_c = 789 m/s²

b) Su aceleración angular supuesta constante.

Resultado: α = -20 π /8 rad/s²

c) Su velocidad angular para t= 3s.

Resultado: ω = 12,5 π rad/s

d) Las vueltas que da hasta detenerse.

Resultado: $\theta = 80\pi \text{ rad} = 40 \text{ vueltas}$

Funciones: Parametros $\theta = \frac{1}{2}\alpha t^2 + \omega_0 t + \theta_0$ $W = \alpha t + \omega_0$ $\omega = 600 \text{ rpm}$ $\omega = 0 \text{ parat} = 85$ $\omega = \omega_0 t + \omega_0$

Pasamos wo derpm a rad/s

W= 600 vveltas 2TT rad 1 min = 20TT rad/s

a) Para calular a aplicamos esta w: $a_c = \frac{V^2}{V}$ v = 20TT(rad).0,20(m) = 12,6 m/sv = wv $v = \frac{(12,6)^2}{0,20} = 789 m/s^7$

b) Como Weat+Wo, sustituinos weo peret=85

0=0.8+20TT -20TT=0.8 0=-20TT rad/s²

c) W= x E+wo; parat=35
W= -20TT. 3 + 20TT = -7,5TT+20TT = 12,5 TT rad/s

d) $\theta = \frac{1}{z} \left(\frac{2017}{8} \right) 8^2 + 2017 \cdot 8 + 0 = -8017 + 16017 = 80 17 \text{ rad}$ $80 + 7 \text{ (rad)} \cdot \frac{1 \text{ violta}}{z + 7 \text{ Trad}} = 40 \text{ violtas}$